首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
Three blade-geometry optimization models derived along with assumptions from the blade element momentum(BEM) approach are studied by using a steady BEM code to improve a small horizontal-axis rotor of three blades that has been previously used in experiments. The base rotor blade has linear-radially varying chord length and pitch angle, while the other three models noted as Burton, Implicit and Hansen due to their references and characteristics yield blades of non-linearly varying chord length and pitch angle. The aim is to compare these rapid models and study how assumptions embedded in them affect performance and induction factors. It is found that the model that has the least assumptions(Hansen) and which considers the blade-profile drag in its optimization procedure yields the highest power coefficient, C_P, at the optimal tip speed ratio(TSR), about 7% higher than the base one and also higher C_P at high TSR. It produces an axial induction factor distribution along the blade that is closest to the 1 D optimal value of 1/3. All optimized tangential induction-factor distributions along the blade closely vary as inverse to the square of the radial distance, while being mildly higher than the base distribution. It shows that sufficient swirl is necessary to increase power but at a level causing not too much energy loss in unnecessary swirl of the wake. At high TSR, all optimized rotors adversely produce higher thrust than the base one, but the one with most embedded assumptions(Burton) produces the highest thrust. Details of all three optimization models are given along with the distributions of the power, thrust, blade hydrodynamic efficiency and induction factors.  相似文献   

2.
为了助力海洋牧场减流防护工程, 研究Savonius型转轮阵列减流性能。作者建立Savonius型转轮三角阵列尾流场数值模型, 并通过水池实验验证准确性, 基于可靠数值模型探究转轮阵列尾涡减流机理, 研究三角阵列结构参数LXLY, 以及动力参数TSR、初始流速、旋向对整体减流性能的影响规律。结果表明,下游转轮产生的涡流呈现非对称分布, 并且产生更多涡流的转轮拥有更好的减流效果。另外, LX为3D和LY为2D时减流性能最佳。最后对比发现, 在叶尖速比为0.9~1.1减流效果更好; 初始流速大小不影响减流效果; 下游转子对称分布时, 随着上游转子改变旋转方向, 减流效果出现明显差异。  相似文献   

3.
基于UDF的水平轴潮流能水轮机被动旋转水动力性能研究   总被引:1,自引:1,他引:0  
针对水平轴潮流能水轮机被动旋转问题,基于Fluent 17.0,运用UDF(User Defined Function)控制滑移网格对网格进行动态调整,仿真研究水轮机在不同安放角下被动旋转的水动力特性。通过仿真分析,结果表明:潮流能水轮机随着叶片安放角度的增加,尖速比、输出功率、捕能系数都是先增大后减小,叶片安放角为6°时,叶轮前后速度差最大,对潮流能利用充分,且各项性能均达到最佳;通过分析叶片受力,叶尖叶素在安放角为2°时阻力最大,3°时升力最大,升阻比在6°时最大,此时叶尖叶素升阻比C_L/C_D=6.27、攻角α=3.06°。由仿真结果可知水平轴潮流能叶轮的自启动过程由5个阶段组成,即加速度增大的加速运动段—加速度减小的加速运动段—加速度反向增大的减速运动段—加速度反向减小的减速运动段—稳定运行段,这对潮流能水轮机的设计具有重要的指导意义。  相似文献   

4.
The existing propulsor that can perform both propulsion and maneuvering along axis of rotation is propeller/rotor for a helicopter. Helicopter propellers when maneuvering increase or decrease their blades’ pitch cyclically to create imbalanced thrust and hence maneuvering force/torque. A “maneuverable propeller” was developed and its performance on both maneuvering and propulsion is assessed. The “maneuverable propeller” is an alternative of the existing helicopter rotors. The novelty of this propulsor is that the imbalanced thrust force/torque is created by cyclically increasing or decreasing the angular speed of their blades relatively to the hubs/shafts, to provide the desired maneuvering torque. This maneuverable propeller is hence defined as the Cyclic Blade Variable Rotational Speed Propeller (CBVRP). One of the best advantages is that the maneuvering torque created by the “maneuverable propeller” is much higher, about 5 times of the shaft torque of the same propeller at thrust only mode. The “maneuverable propeller” has wide applications for both surface ships and underwater vehicles that require high maneuverability for cruising inside the narrow passage.  相似文献   

5.
风浪和海洋飞沫对海表面拖曳系数和风廓线的影响   总被引:2,自引:1,他引:1  
基于埃克曼理论,本文将波致应力和飞沫应力引入到海-气边界层的界面应力中,来研究海表面风浪和海洋飞沫对海-气边界层动量交换的影响,并得到修改后的埃克曼模型的理论解。波致应力是由风浪谱和波增长函数估计,并得到在中低风速下,波致应力、飞沫应力与湍流应力相比,对海表面拖曳系数和风廓线的影响非常小。当风速高于25米/秒时,海洋飞沫通过飞沫应力对海-气界面应力的作用远高于波致应力,以至于波致应力可以忽略。海表面拖曳系数在高风速下,随着风速的增大而减小。通过采用风浪谱的不同波龄,得到海洋飞沫的产生会导致海-气边界层风速的增加。最后,理论解与现场的观察数据进行了对比。对比后的数据表明,在中高风速下,飞沫对海-气边界层的影响远大于表面风浪。  相似文献   

6.
Comparison of current measurements from moored (paddle-wheel rotor) Aanderaa current meters and acoustic Doppler current profilers in a strong tidal flow on Georges Bank indicates rate under-reading by the Aanderaa meters at some vertical positions. The under-reading may arise from mooring-line vibrations induced by vortex shedding from spherical buoyancy packages, and shielding of the paddle-wheel rotors due to the meters' inability to remain aligned with the fluctuating relative water velocity. Field tests and a simple model are used to investigate this explanation. The authors briefly review the Georges Bank observations that instigated this investigation. An explanation for the degradation of the Aanderaa measurements is proposed, observational information from field tests is discussed, and the model and its implications are presented. The model results support the hypothesis that high-frequency mooring-line vibration causes the degradation of the Aanderaa measurements  相似文献   

7.
Meng  Long  He  Yan-ping  Zhao  Yong-sheng  Peng  Tao  Yang  Jie 《中国海洋工程》2019,33(2):137-147
In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.  相似文献   

8.
In recent times, self-rectifying axial-flow air turbines are being widely employed in oscillating water column (OWC) wave energy converters (WEC). The steady performance of air turbines has been systematically investigated in previous studies. However, there still exists a lack of information on their unsteady performance, such as in the self-starting characteristics and subsequent running behavior. In this study, the unsteady behavior of impulse turbine under various constant-flow conditions is investigated. Experimental studies were conducted to investigate the effects of constant-load on the variations in the rotation speed, the pressure drop and the torque output of the turbine starting from rest. A fully passive flow-driving numerical model is employed for further detailed analysis of the flow and pressure fields. Followed by a well-agreed validation using the corresponding experimental data, the three dimensional (3D) transient model is used to study the effects of the air-flow velocity magnitude and the rotors’ moment of inertia on the self-starting performance of the turbine. Except for the variations in the rotation speed, the pressure drop and the pneumatic torque, the distributions of the flow-field and the pressure over the blades at specific time-points are analyzed.  相似文献   

9.
This paper deals with the development of a Matlab-Simulink model of a marine current turbine system through the modeling of the resource and the rotor. The simulation model has two purposes: performances and dynamic loads evaluation in different operating conditions and control system development for turbine operation based on pitch and speed control. In this case, it is necessary to find a compromise between the simulation model accuracy and the control-loop computational speed. The blade element momentum (BEM) approach is then used for the turbine modeling. As the developed simulation model is intended to be used as a sizing and site evaluation tool for current turbine installations, it has been applied to evaluate the extractable power from the Raz de Sein (Brittany, France). Indeed, tidal current data from the Raz de Sein are used to run the simulation model over various flow regimes and yield the power capture with time.  相似文献   

10.
风应力拖曳系数选取对风暴潮数值模拟的影响   总被引:8,自引:0,他引:8  
在风暴潮的形成中风应力起决定性作用 ,风应力拖曳系数决定了大气与海洋间的动量传输率。观测结果表明 ,风应力拖曳系数随风速而变化 ,与海面粗糙度有关。文中采用几种与风速有关的风应力拖曳系数表达式进行数值模拟 ,与将其视为常数情况相比较 ,计算结果的精度均有较明显提高。对比各表达式模拟结果 ,采用 Smith(1980 )风应力拖曳系数公式的模拟效果为最好  相似文献   

11.
SWAN模型中不同风拖曳力系数对风浪模拟的影响   总被引:1,自引:1,他引:0  
丁磊  于博 《海洋学报》2017,39(11):14-23
本文以荷兰哈灵水道海域为实验区域,通过敏感性实验,研究了在14 m/s、31.5 m/s和50 m/s(分别代表一般大风、强热带风暴和强台风的极端条件)定常风速下SWAN模型中不同风拖曳力系数对风浪模拟的影响程度。结果表明,对于近岸浅水区域(水深小于20 m),风拖曳力系数计算方案的选择对有效波高影响较小,而且当风速增加到一定程度后,波浪破碎成为影响波高值的主要因素;对于深水区域(水深大于30 m),一般大风条件下风拖曳力系数计算方案的选择对有效波高影响仍然较小,随着风速的继续增大,风拖曳力系数计算方案的选择对有效波高的影响逐渐显著。对于平均周期,风拖曳力系数计算方案的选择和风速的改变对其影响均较小,而由水深变浅导致的波浪破碎对其影响较为显著。根据敏感性实验结果,本文对SWAN模型中风拖曳力系数计算方案的选择做出如下建议:计算近岸浅水区域风浪场或深水区域一般大风条件风浪场时,其风拖曳力系数可以直接采用模型默认选项;而对于深水区域更大风速条件,可首先采用模型默认选项试算,然后结合当地海域实测波浪资料进行修正。  相似文献   

12.
A formulation is presented for evaluating the performance of acoustic data systems to determine the location and orientation of underwater research apparatus. The variables to describe the position of the underwater research apparatus are referenced to a surface ship, and represent the straight-line distance from the stern of the ship to a point on the apparatus (R), the angular distance down from the sea surface (Phi), and the angular distance from the direction of motion of the ship (Theta). The three orientation variables on the apparatus are the angle between thezandz'axes (i), the angle between thexandx'axes in thex'-y'plane (Omega), and the angle which locates thex'axis in thex'-y'plane (omega). A simple model for the sound velocity variation with depth is included in the range data analysis, while the Doppler data are shown not to need that further complication in the analysis. An error model is constructed and applied to three geometries which represent common underwater research devices. Accuracy goals for possible applications of these devices are discussed, and performance requirements for an acoustic system which would meet the goals are derived.  相似文献   

13.
1 .Introduction The Wells turbine ,consisting of several symmetric aerofoil blades ,fixedto a hub,can rotate inthe same direction without anyrectifyingflap valves .It has been consideredto bethe most prospectivewave energy conversion deviceforits simple s…  相似文献   

14.
Tidal current energy is prominent and renewable. Great progress has been made in the exploitation technology of tidal current energy all over the world in recent years, and the large scale device has become the trend of tidal current turbine (TCT) for its economies. Instead of the similarity to the wind turbine, the tidal turbine has the characteristics of high hydrodynamic efficiency, big thrust, reliable sealing system, tight power transmission structure, etc. In this paper, a 1/5th scale horizontal axis tidal current turbine has been designed, manufactured and tested before the full scale device design. Firstly, the three-blade horizontal axis rotor was designed based on traditional blade element momentum theory and its hydrodynamic performance was predicted in numerical model. Then the power train system and stand-alone electrical control unit of tidal current turbine, whose performances were accessed through the bench test carried out in workshop, were designed and presented. Finally, offshore tests were carried out and the power performance of the rotor was obtained and compared with the published literatures, and the results showed that the power coefficient was satisfactory, which agrees with the theoretical predictions.  相似文献   

15.
为提高母型船阻力性能,以船体阻力性能为优化对象,基于改造母型船法,研究船舶球鼻艏以及船尾线型的改变对船舶阻力性能的影响.采用高度集成化的Tribon系统、可视化绘图软件Auto CAD及CFD(Computational Fluid Dynamics)通用前处理软件ICEM联合建模的方法来建立船体模型.通过模拟计算结果与实验值的对比分析,验证CFD技术在船舶阻力性能预报中的合理性和有效性.通过对比3种不同球鼻艏时的船体阻力得知:从阻力性能方面考虑,对于低速丰满型船舶选用普通型球鼻艏以及中高速船舶采用上翘型球鼻艏均可以获取较好地减阻效果.同时比较不同航速下尾部线型对船体总阻力的影响表明,选优后的方形尾在相同的航速下阻力低、消耗的功率小、形状效应小、黏压阻力和摩擦阻力也相对较小.  相似文献   

16.
In this paper a nonlinear dynamic PDE formulation for a pipe string suspended from a pipelay vessel to the seabed in a pipelay operation is developed. This model extends a three-dimensional beam model capable of undergoing finite extension, shearing, twist and bending, to apply for marine applications by adding the effects of restoring forces, hydrodynamic drag and seabed interaction. The model is validated against the natural catenary equation and the FEM code RIFLEX. The model is extended to include the pipelay vessel dynamics by applying a potential theory formulation of a surface vessel, suited for dynamic positioning and low speed maneuvering, as a boundary condition for the PDE. This system is found to be input-output passive and stable. Pipeline installation applications where the presented model is suited are e.g., analysis and simulation of the installation operation, operability analysis, hardware-in-the-loop (HIL) testing for vessel control systems, and automation of the pipelay operation.  相似文献   

17.
海底滑坡作为常见的海洋地质灾害,对海洋油气工程安全产生巨大威胁。海床土体失稳引起滑坡体滑动,会对海底管道产生拖曳作用。基于计算流体动力学方法(CFD)建立海底滑坡体对管道作用的评估模型,采用H-B模型描述块状滑坡体并与试验比较验证,分析不同海床倾斜度滑坡对管道的作用并拟合表达式;研究了海底管道在滑坡作用下的力学响应,并采用极限状态方法开展海底滑坡作用下管道结构极限安全分析,探讨了管道埋地状态时的极限安全界限,建立滑坡作用下管道结构安全分析方法。研究表明:滑坡对管道作用力与海床倾角呈现正相关,而覆土层厚度对作用力影响较小;随着不排水抗剪强度的减小,允许的滑坡宽度和速度均增加,表明土体不排水抗剪强度与引起的拖曳力呈正相关;滑坡土体宽度对极限安全速度影响较大。  相似文献   

18.
This paper reports two specific improvements in the finite-dimensional nonlinear dynamical modeling of marine thrusters. Previously reported four-quadrant models have employed thin airfoil theory considering only axial fluid flow and using sinusoidal lift/drag curves. First, we present a thruster model incorporating the effects of rotational fluid velocity and inertia on thruster response. Second, we report a novel method for experimentally determining nonsinusoidal lift/drag curves. The model parameters are identified using experimental thruster data (force, torque, and fluid velocity). The models are evaluated by comparing experimental performance data with numerical model simulations. The data indicates that thruster models incorporating both reported enhancements provide superior accuracy in both transient and steady-state responses  相似文献   

19.
Wind speed scaling and the drag coefficient   总被引:2,自引:0,他引:2  
[1]Banner M L, Chen W, Walsh E J, et al.  相似文献   

20.
This study has been undertaken to quantify the tank wall effects on resistance estimation of ship models. Given the finite width of a tank, the flow around a ship model has been numerically modelled and the pressure and pressure related drag have been estimated.Since the model runs at speeds essentially in the laminar and transient speed range, an inviscid model has been chosen for obtaining the pressure drag component in the numerical studies. Grid dependency study has been done to optimize the mesh in the control volume for the numerical studies. An unstructured grid consisting of hexahedral cells has been used in the volume of fluid (VOF) model. The model chosen is a medium speed, ocean going barge and the residuary resistance has been obtained for different tank width conditions. The tank width has been defined using a non-dimensionalized parameter W/B (tank width W, model width B) ratio. The study shows that the residuary resistance obtained at W/B=5.0 is free from tank wall influence for the chosen model. The findings of the study have been compared by testing two geosim models under the same tank width conditions. The residuary resistance values have been compared with numerical results. The combined numerical experimental approach provides interesting results of consistency for comparison. The tank wall influences suggested by the numerical study are well quantified in the experimental study and give useful guideline for limiting wall influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号