首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
In this paper we discuss the results of a swath bathymetric investigation of the Canary archipelago offshore area. These new data indicate that volcanism is pervasive throughout the seafloor in the region, much more that would be suggested by the islands. We have mapped tens of volcanic edifices between Fuerteventura and Gran Canaria and offshore Tenerife, La Gomera, El Hierro and La Palma. Volcanic flows are present between Tenerife and La Gomera and salic necks dominate the eastern insular slope of La Gomera. This bathymetry also supports land geologic studies that indicate that the oceanic archipelago has acquired its present morphology in part by mass wasting, a consequence of the collapse of the volcanic edifices. In the younger islands, Tenerife, La Palma and El Hierro, the Quaternary (1.2 to 0.15 Ma) debris avalanches are readily recognizable and can be traced offshore for distances measured in tens of km. Off the older islands, Lanzarote, Fuerteventura, Gran Canaria and La Gomera (<20 to 3.5 Ma), the avalanches have been obscured by subsequent turbidity current deposition and erosion as well as hemipelagic processes. The failure offshore western Lanzarote is in the form of a ramp at the base of the insular slope bound on the seaward side by a scarp. Its size and the lack of evidence of rotation along its landwards side precludes the possibility that it is a slump. It probably represents a slide whose outer scarp is caused by break-up of the slide. Mounds on the ramp’s surface may represent post-displacement volcanic structures or exotic blocks transported to their present locations by the slide. The failures offshore Fuerteventura are so large that, although they occurred in the Miocene-Pliocene, exotic blocks displaced from upslope are still recognizable in the insular margin morphology. The Canary Island insular margin appears to be a creation of Miocene-Pliocene mass wasting and more recent turbidity current deposition and erosion, and hemilepagic deposition. Failures offshore La Gomera are due to debris flows and/or turbidity currents. These events have obscured earlier mass wasting events. An erratum to this article is available at .  相似文献   

2.
Alan Logan 《Marine Ecology》2004,25(3):207-215
Abstract.  The lacazelline brachiopod Pajaudina , with type species P. atlantica , was originally described by the author in 1988 from dead and transported shells collected by Dutch CANCAP expeditions to the Canary Islands. Living sites have now been discovered in shallow-water caves on El Hierro and La Palma in the Canary Islands. From photographs and specimens, information has been obtained on life habits and associated biota, the nature of the ptycholophe lophophore, sexually dimorphic characters of the shell and ontogenetic growth stages of the dorsal valve. The latter are shown to be similar to those of Lacazella , as exemplified by L. caribbeanensis from the Bahamas, up to the penultimate stage, following which there are repeated furcations of the minor interbrachial lobes not seen in Lacazella but present in Ospreyella Lüter & Wörheide.  相似文献   

3.
World oceans are becoming more acidic as a consequence of CO2 anthropogenic emissions, with multiple physiological and ecological implications. So far, our understanding is mainly limited to some species through in vitro experimentation. In this study, we took advantage of a recent submarine eruption (from October 2011 to March 2012) at ~ 1 nautical mile offshore El Hierro Island (Canary Islands, central east Atlantic) to determine whether altered physical–chemical conditions, mainly sudden natural ocean acidification, affected the morphology, photosynthesis (in situ Chl-a fluorescence) and physiological performance (photo-protective mechanisms and oxidative stress) of the conspicuous brown seaweeds Padina pavonica—a species with carbonate deposition – and Lobophora variegata—a species without carbonate on thallus surfaces – , both with similar morphology. Seaweeds were sampled twice: November 2011 (eruptive phase with a pH drop of ca. 1.22 units relative to standard conditions) and March 2012 (post-eruptive phase with a pH of ca. 8.23), on two intertidal locations adjacent to the eruption and at a control location. P. pavonica showed decalcification and loss of photo-protective compounds and antioxidant activity at locations affected by the eruption, behaving as a sun-adapted species during lowered pH conditions. At the same time, L. variegata suffered a decrease in photo-protective compounds and antioxidant activity during the volcanic event, but its photosynthetic performance remained unaltered. These results reinforce the idea that calcareous seaweeds, as a whole, are more sensitive than non-calcareous seaweeds to alter their performance under scenarios of reduced pH.  相似文献   

4.
In August–September of 1995, 20 Nautile dives and detailed magnetic surveys (spaced every 1.8 km) were undertaken on two segments of the Mid-Atlantic Ridge between the Oceanographer and Hayes fractures zones. These two segments are only 65 km apart and show strong morphology and gravity contrasts. OH1 is shallower and has a large mantle Bouguer anomaly (MBA) bull's eye, whereas OH3 is deeper and has a smaller MBA bull's eye.Thirteen dives were devoted to segment OH1. The Median Ridge (MR) located on the central high (1700 m deep) is topped by 100 to 300 m high circular volcanoes. The volcanics consists mainly of porphyritic and/or vesicular pillows and volcaniclastics. The NVZ (2200 m deep), located in the valley floor east of the MR, consists of near aphyric fluid lava flows. A chain of off-axis volcanoes, displaying a magnetic continuity with surroundings, extends on both sides of the axis. Three volcanoes on the east side and one on the west side of the axis were explored and sampled by submersible. The off-axis increase of weathering, Fe-Mn coating and magnetic signature suggest that the volcanoes were built at or near the ridge axis. The spacing of NS elongated hills bearing circular volcanoes and separated large magnetic signature (2 to 4 km) depressions suggests that several similar volcanic events occured during the past 2 Ma. The last 1 Ma episode involves (1) the construction of an axial ridge (MR) by fissure eruptions and the formation of circular summit volcanoes by focused volcanism, and (2) the extrusion of fluid magma in the depressions formed by further fissuring and faulting of the MR.  相似文献   

5.
6.
南海西南次海盆被动陆缘洋陆转换带位于陆缘强烈伸展区,蕴含着岩石圈临界伸展破裂和洋盆扩张过程的丰富信息。本文利用多道地震剖面和重力异常数据,对西南次海盆被动陆缘构造单元进行划分,研究陆缘南、北部洋陆转换带结构构造特征,探讨陆缘伸展演化过程。多道地震剖面资料显示,北部洋陆转换带发育有裂陷期断陷和向海倾斜的掀斜断块;南部发育有低角度正断层控制的裂陷期断陷、海底火山以及局部隆起;从陆到洋方向,重力异常值变化明显。根据上述结果南海西南次海盆被动陆缘划分为近端带、洋陆转换带和洋盆三个构造单元,分别对应了其伸展演化过程的三个阶段:前裂谷阶段、陆缘裂陷阶段和海底扩张阶段。  相似文献   

7.
Field geological data of the Pantelleria Island, a large Late Quaternary volcano located in the Sicily Channel rift zone, integrated with offshore geophysical information, are used to derive the structural setting of the Island and the surrounding region, and to analyse the relationships between tectonics and magmatism. Field work shows that the principal faults exposed on the Island fall into two systems trending NNE–SSW and NW–SE. Mapped faults from offshore multichannel seismic profiles show similar trends, and some of them represent the offshore extension of the Pantelleria Island structures. The NW–SE faults bound the Pantelleria Graben, one of the three main depressions formed since the Late Miocene–Early Pliocene within the African continental platform, which compose the Sicily Channel rift zone. A 3-D Moho depth geometry, derived from inversion of Bouguer gravity data, shows a significant uplift of the discontinuity up to 16–17 km beneath the westernmost part of the Pantelleria Graben and beneath the Pantelleria Island; it lows rapidly to 24–25 km away from the graben north-eastward and south-westward. The Moho uplift could explain the presence of a shallow magma chamber in the southern part of the Island, where processes of magmatic differentiation are documented. Geological and geophysical data suggest that the northwestern part of the Sicily Channel is presently dominated by a roughly E–W directed extensional regime. Crustal cracking feeding the Quaternary volcanism could be also related to this extensional field that would be further responsible for the development of the N–S trending volcanic belt that extends in the Sicily Channel from Lampedusa Island to the Graham Bank. This mode of deformation is confirmed also by geodetic data. This implies that in the northwestern part of the Sicily Channel, the E–W extension replaced the NE–SW crustal stretching that originated the NW-trending tectonic depressions constituting the rift zone.  相似文献   

8.
The combination of prevailing northeasterly tradewinds and island topography results in the formation of vigorous, westward propagating cyclonic eddies in the lee of the Hawaiian Islands on time scales of 50–70 days. These mesoscale (∼102 km) features are nowhere more conspicuous or spin up more frequently than in the Alenuihaha Channel between the Island of Maui and the Big Island of Hawaii. Cyclonic eddies in subtropical waters such as those around Hawaii vertically displace the underlying nutricline into the overlying, nutrient-depleted euphotic zone creating localized biologically enhanced patches. Insight into how these eddies may directly influence pelagic fish distribution is provided by examination of recreational fish catch data coinciding with the presence of eddies on the fishing grounds. We highlight the 1995 Hawaii International Billfish Tournament in which a cyclonic eddy dominated the ocean conditions during the weeklong event and the fish catch distribution differed significantly from the average historical tournament catch patterns. On the tournament fishing grounds, well-mixed surface layers and strong current flows induced by the eddy's presence characterized the inshore waters where the highest catches of the prized Pacific blue marlin (Makaira mazara) occurred, suggesting possible direct (e.g., physiological limitations) or indirect (e.g., prey availability) biological responses of blue marlin to the prevailing environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
This paper describes GLORIA sidescan sonar data from a single swath along the Cocos-Nazca Spreading Centre between the 95.5° W propagating rift and the Pacific-Cocos-Nazca triple junction. Almost the whole of the plate boundary was imaged. Five medium sized offsets of the spreading centre, ranging from 10 to 25 km, were seen. Of these, at least one (at 99° W) is a previously unknown propagating rift, propagating westwards away from the Galapagos hotspot at about 40 mm a-1. Two other offsets have some, but not all, of the characteristics of propagating rifts, and may be poorly developed (possibly duelling) propagating rifts or migrating overlapping spreading centres. In each case the apparent propagation rate is between one and two times the half spreading rate. The average length of ridge segments in this region is 70 km, but lengths range from 12 to 135 km. The longest segments are those immediately behind actively propagating ridge offsets. The overall plan shape of the ridge axis is roughly sinusoidal, with a wavelength of 400–500 km and an amplitude of ±20 km. This nonlinear shape has arisen since the spreading centre was created, and may reflect an instability in the mantle plumes that control ridge segmentation.  相似文献   

10.
Deep penetrating multichannel seismic reflection and gravity data have been used to study the lithospheric structure of the Canary Swell. The seismic reflection data show the transition from undisturbed Jurassic oceanic crust, away from the Canary Islands, to an area of ocean crust strongly modified by the Canary volcanism (ACV). Outside the ACV the seismic records image a well layered sedimentary cover, underlined by a bright reflection from the top of the igneous basement and also relatively continuous reflections from the base of the crust. In the ACV the definition of the boundary between sedimentary cover and igneous basement and the crust-mantle boundary remains very loose. Two-dimensional gravity modelling in the area outside the influence of the Canary volcanism, where the reflection data constrain the structure of the ocean crust, suggests a thinning of the lithosphere. The base of the lithosphere rises from 100 km, about 400 km west of the ACV, to 80 km at the outer limit of the ACV. In addition, depth conversion of the seismic reflection data and unloading of the sediments indicate the presence of a regional depth anomaly of an extension similar to the lithospheric thinning inferred from gravity modelling. The depth anomaly associated with the swell, after correction for sediment weight, is about 500 m. We interpret the lithospheric thinning as an indication of reheating of old Mesozoic lithosphere beneath the Canary Basin and along with the depth anomaly as indicating a thermal rejuvenation of the lithosphere. We suggest that the most likely origin for the Canary Islands is a hot spot.  相似文献   

11.
Mud volcanoes and gas vents in the Okhotsk Sea area   总被引:5,自引:0,他引:5  
Gas emissions from mud volcanoes on Sakhalin Island and water-column gas flares arising from cold seeps in the Okhotsk Sea appear to be related. They are likely activated by tectonic movements along the transform plate boundary separating the Okhotsk Sea Plate from the Eurasian and Amur plates. Gas vents (flares) and methane anomalies occur in the waters offshore Sakhalin Island, along with NE-SW-trending mounds and fluid escape structures on the seafloor. The intersection of the NE-striking transverse faults on land with the Central Sakhalin and Hokkaido-Sakhalin shear zones apparently determines the sites of mud volcanoes, a pattern that continues offshore where the intersection with the East Sakhalin and West Derugin shear zones determines the sites of the submarine gas vents.  相似文献   

12.
A zonal hydrographic section along 44.65°N, from the coast of Oregon to 300 km offshore, was occupied regularly (at least seasonally) from 1961 to 1971 and then sporadically until recently. Regular monitoring of this section to 160 km offshore resumed in July 1997 as part of the GLOBEC Long Term Observational Program; the recent data provide observations in Oregon coastal waters of El Niño 1997–98 and La Niña conditions that followed. The complete seasonal data from the decade 1961–1971 provide a basis for comparison with the recent temperature and salinity sections, steric height profiles, geostrophic velocity, and water mass characteristics. These data, and sporadic observations in intervening years, allow us to compare conditions during several ENSO events with the recent event and to search for evidence of climate change. The PFEL Coastal Upwelling Index, sea level from the University of Hawaii Sea Level Center, the Multivariate ENSO Index (MEI), the Pacific Decadal Oscillation (PDO), and outflow from the Columbia River are used to distinguish local and remote causes of variability in physical oceanographic conditions off Oregon. The sequence of El Niño/La Niña/El Niño in 1963–66, during a cool phase of PDO, provides a comparison to El Niño/La Niña of 1997–2000. El Niño in 1982–83 and 1997–98, during a warm phase of PDO, caused the largest oceanographic anomalies in the 40 years. The comparison indicates warming of the coastal ocean off Oregon and suggests a modulation of ENSO effects by PDO. Such modulation would mask evidence for secular climate change in our 40-year oceanographic data series.  相似文献   

13.
Analysis of Sea Beam bathymetry along the Mid-Atlantic Ridge between 24°00 N and 30°40 N reveals the nature and scale of the segmentation of this slow-spreading center. Except for the Atlantis Transform, there are no transform offsets along this 800-km-long portion of the plate boundary. Instead, the Mid-Atlantic Ridge is offset at intervals of 10–100 km by nontransform discontinuities, usually located at local depth maxima along the rift valley. At these discontinuities, the horizontal shear between offset ridge segments is not accommodated by a narrow, sustained transform-zone. Non-transform discontinuities along the MAR can be classified according to their morphology, which is partly controlled by the distance between the offset neovolcanic zones, and their spatial and temporal stability. Some of the non-transform discontinuities are associated with off-axis basins which integrate spatially to form discordant zones on the flanks of the spreading center. These basins may be the fossil equivalents of the terminal lows which flank the neovolcanic zone at the ends of each segment. The off-axis traces, which do not lie along small circles about the pole of opening of the two plates, reflect the migration of the discontinuities along the spreading center.The spectrum of rift valley morphologies ranges from a narrow, deep, hourglass-shaped valley to a wide valley bounded by low-relief rift mountains. A simple classification of segment morphology involves two types of segments. Long and narrow segments are found preferentially on top of the long-wavelength, along-axis bathymetric high between the Kane and Atlantis Transforms. These segments are associated with circular mantle Bouguer anomalies which are consistent with focused mantle upwelling beneath the segment mid-points. Wide, U-shaped segments in cross-section are preferentially found in the deep part of the long-wavelength, along-axis depth profile. These segments do not appear to be associated with circular mantle Bouguer anomalies, indicating perhaps a more complex pattern of mantle upwelling and/or crustal structure. Thus, the long-recognized bimodal distribution of segment morphology may be associated with different patterns of mantle upwelling and/or crustal structure. We propose that the range of observed, first-order variations in segment morphology reflects differences in the flow pattern, volume and temporal continuity of magmatic upwelling at the segment scale. However, despite large first-order differences, all segments display similar intra-segment, morphotectonic variations. We postulate that the intra-segment variability represents differences in the relative importance of volcanism and tectonism along strike away from a zone of enhanced magma upwelling within each segment. The contribution of volcanism to the morphology will be more important near the shallowest portion of the rift valley within each segment, beneath which we postulate that upwelling of magma is enhanced, than beneath the ends of the segment. Conversely, the contribution of tectonic extension to the morphology will become more important toward the spreading center discontinuities. Variations in magmatic budget along the strike of a segment will result in along-axis variations in crustal structure. Segment mid-points may coincide with regions of highest melt production and thick crust, and non-transform discontinuities with regions of lowest melt production and thin crust. This hypothesis is consistent with available seismic and gravity data.The rift valley of the Mid-Atlantic Ridge is in general an asymmetric feature. Near segment mid-points, the rift valley is usually symmetric but, away from the segment mid-points, one side of the rift valley often consists of a steep, faulted slope while the other side forms a more gradual ramp. These observations suggest that half-grabens, rather than full-grabens, are the fundamental building blocks of the rift valley. They also indicate that the pattern of faulting varies along strike at the segment scale, and may be a consequence of the three-dimensional, thermo-mechanical structure of segments associated with enhanced mantle upwelling beneath their mid-points.  相似文献   

14.
This study reports the result of deep ocean-bottom seismometer recording of an undersea volcanic event in progress. An array of five three-component, isolated sensor ocean-bottom seismometers (ISOBS) was deployed for 28 days on the summit and flanks of Loihi Seamount, Hawaii, to monitor seismicity. The deployment was prompted by reports from the Hawaiian Volcano Observatory (HVO) of a swarm of small-magnitude events located beneath the active submarine volcano in late September, 1986. Monitoring of this earthquake swarm by the University of Hawaii commenced 1 October 1986. Although seismicity tapered off rapidly after 11 October, more than 200 events were located. Systematic changes in spatial clustering during the initial swarm activity suggest changing patterns of stress within this crustal volume, possibly due to induced stress resulting from magma movement in the underlying crust or deep portions of the edifice.Most of the very shallow (< 10 km) events were located beneath the summit and southwest flank of the elongate edifice. No shallow tremor was observed despite a search through the data, although such tremor may have ceased prior to deployment of the ocean-bottom seismometers (OBS). Constraints on the association between seismicity and observed topographic and tectonic elements of Loihi are also of primary importance. Many of the earthquakes located near the steep flanks generated rock falls that were recorded on the OBSs. This is consistent with the results of dredge and bottom photography data indicating that the flanks are covered with fragments of shattered lava pillows and flows. Dike intrusion and mass wasting are major influences on the morphology of Loihi. Intact flows have been observed near the deep portion of the south rift zone; however, few events were located in that region during this swarm.  相似文献   

15.
SeaMARC II side-scan sonar data reveal that a large area of seafloor north and west of Easter Island has been disrupted by recent submarine volcanism. A large volcanic area begins approximately 60 km WNW of the island and extends for over 130 km to the west. The volcanic field is characterized by high backscatter intensity in the side-scan sonar records and is elevated 400–1000 m above the N-S seafloor fabric that surrounds it. This field, the Abu Volcanic Field, covers at least 2500 km2 and appears to consist of recent lava flows and small volcanoes. Backscatter intensity of the Abu Volcanic Field is similar to that of the adjacent ridge flank which is less than 0.4 Ma, suggesting a similar age for its formation. Two additional areas of high backscatter immediately north of Easter Island cover a combined area of over 300 km2. The sidescan sonar records show that these features are clearly of volcanic origin and are not debris flows from the nearby island. The flows are nearly 300 m thick and are morphologically similar to subaerial pahoehoe lava shields. Their high backscatter indicates that they are also the products of relatively recent submarine volcanic activity. The presence of these large areas of recent volcanism in the vicinity of Easter Island has important implications for the various models that have been proposed to explain the origin of the Easter Seamount Chain. In addition, the similar ages of Easter Island and the Easter Microplate suggest that the presence of a hotspot near or beneath this fast-spreading portion of the East Pacific Rise about 4.5 m.y. ago may have initiated the large-scale rift propagation that created the microplate.  相似文献   

16.
Geophysical observations demonstrate that the archipelagic apron surrounding the Marquesan hot-spot volcanoes is derived almost entirely from mass wasting processes. Seismic reflection and refraction data constrain the volume of the apron sediments to approximately 200,000 km3, with thicknesses reaching over 2 km in the deep portions of the moat near the edge of the volcanic edifice. Seismic velocities average 4 to 5 km s–1 in the sediments, and 6 km s–1 at the top of the underlying basement. Single channel seismic profiles show acoustically chaotic cores in the sediments of the apron, which are interpreted as debris flows from mass wasting events. We deduce that the apron is formed by catastrophic collapses that may involve volumes over 100 km3 tens to hundreds of times during the lifetime of a volcano. Comparison with similar data from the Hawaiian Islands yields the result that the total volume of volcanics and their derived sediments along the strike of the chains is only slightly smaller for the Marquesas, implying comparable eruption rates. However, the ratio of sediment to surface volcanic load is much larger for the latter, leading to an overfilled moat in the Marquesas and an underfilled moat at Hawaii. The much larger size of the Hawaiian islands can be explained as the combined effects of a higher thermal swell, loading a stiffer elastic plate, and proportionately less mass wasting.  相似文献   

17.
ENSO-induced interannual variability in the southeastern South China Sea   总被引:5,自引:0,他引:5  
In this study, El Niño Southern Oscillation (ENSO)-induced interannual variability in the South China Sea (SCS) is documented using outputs from an eddy-resolving data-assimilating model. It is suggested that during an El Niño (La Niña) event, off-equatorial upwelling (downwelling) Rossby waves induced by Pacific equatorial wind anomalies impinge on the Philippine Islands and excite upwelling (downwelling) coastal Kelvin waves that propagate northward along the west coast of the Philippines after entering the SCS through the Mindoro Strait. The coastal Kelvin waves may then induce negative (positive) sea level anomalies in the southeastern SCS and larger (smaller) volume transport through the Mindoro and Luzon Straits during an El Niño (La Niña) event.  相似文献   

18.
In 1989–1990 the SeaMARC II side-looking sonar and swath bathymetric system imaged more than 80 000 km2 of the seafloor in the Norwegian-Greenland Sea and southern Arctic Ocean. One of our main goals was to investigate the morphotectonic evolution of the ultra-slow spreading Knipovich Ridge from its oblique (115° ) intersection with the Mohns Ridge in the south to its boundary with the Molloy Transform Fault in the north, and to determine whether or not the ancient Spitsbergen Shear Zone continued to play any involvement in the rise axis evolution and segmentation. Structural evidence for ongoing northward rift propagation of the Mohns Ridge into the ancient Spitsbergen Shear Zone (forming the Knipovich Ridge in the process) includes ancient deactivated and migrated transforms, subtle V-shaped-oriented flank faults which have their apex at the present day Molloy Transform, and rift related faults that extend north of the present Molloy Transform Fault. The Knipovich Ridge is segmented into distinct elongate basins; the bathymetric inverse of the very-slow spreading Reykjanes Ridge to the south. Three major fault directions are detected: the N-S oriented rift walls, the highly oblique en-echelon faults, which reside in the rift valley, and the structures, defining the orientation of many of the axial highs, which are oblique to both the rift walls and the faults in the axial rift valley. The segmentation of this slow spreading center is dominated by quasi stationary, focused magma centers creating (axial highs) located between long oblique rift basins. Present day segment discontinuities on the Knipovich Ridge are aligned along highly oblique, probably strike-slip faults, which could have been created in response to rotating shear couples within zones of transtension across the multiple faults of the Spitsbergen Shear Zone. Fault interaction between major strike slip shears may have lead to the formation of en-echelon pull apart basins. The curved stress trajectories create arcuate faults and subsiding elongate basins while focusing most of the volcanism through the boundary faults. As a result, the Knipovich Ridge is characterized by Underlapping magma centers, with long oblique rifts. This style of basin-dominated segmentation probably evolved in a simple shear detachment fault environment which led to the extreme morphotectonic and geophysical asymmetries across the rise axis. The influence of the Spitsbergen Shear Zone on the evolution of the Knipovich Ridge is the primary reason that the segment discontinuities are predominantly volcanic. Fault orientation data suggest that different extension directions along the Knipovich Ridge and Mohns Ridge (280° vs. 330°, respectively) cause the crust on the western side of the intersection of these two ridges to buckle and uplift via compression as is evidenced by the uplifted western wall province and the large 60 mGal free air gravity anomalies in this area. In addition, the structural data suggest that the northwards propagation of the spreading center is ongoing and that a `normal' pure shear spreading regime has not evolved along this ridge. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
论述了台湾海峡新生代断裂构造基本特征,划分出海峡及两侧两大断裂系,探讨了断裂系的形成演化过程,阐明了断裂构造的形成演化与海峡裂谷演化的对应关系,并进一步探讨了海峡裂谷的演化模式。文中对NW向断裂折射平移和扇状收敛的首次发现,为弧陆碰撞引起海峡裂谷封闭的观点提供了重要佐证。  相似文献   

20.
Specific features of variations in the bottom topography of the mid-ocean rift zones with intermediate spreading rates are considered in this work. The rift zones with a transition morphology are analyzed, and the main features of the transition topography are distinguished. Several successive stages of topographic variations, each of which is characterized by a specific relative position of the topographic features of the rift zone cross section, have been distinguished based on an analysis of the character of rift zone topographic variations in going from axial rises to rift valleys. The specific features of variations in the structural segmentation of rift zones with intermediate spreading rates, depending on the morphological changes, have been established. The thermal models of the structure of the rift zone magmatic formations have been considered, and the geodynamic relations of the magmatic systems with the specific features of the morphology and the structural segmentation of the mid-ocean axial zones with the intermediate spreading rates have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号