首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南海重力异常特征及其显著的构造意义   总被引:1,自引:0,他引:1  
在南海地区地震测深数据有限的情况下,利用重力异常可以研究南海大范围的深部地壳结构及地质构造展布特征。基于空间重力异常,结合最新的地形、沉积物厚度及地震测深等数据,分别从地震约束的莫霍面反演和无约束的三维相关成像两个视角研究南海的地壳结构,利用壳幔界面起伏、地壳厚度及三维等效密度分布来探讨地壳结构的纵横向变化。同时,联合采用延拓、水平梯度及线性构造增强滤波方法聚焦重力异常中的区域线性特征,突出显示了反映地壳横向变化的深断裂、洋陆转换边界、海盆扩张轴等线性构造的展布。重力解释与贯穿南海南北的广州-巴拉望地学断面对比表明,重力异常反演及异常的区域线性特征,较好地揭示了南海海域大范围的地壳结构与区域构造展布。  相似文献   

2.
Deep Earth dynamics impact so strongly on surface geological processes that we can use sediment palaeo‐markers as a window into the deeper Earth. Derived from climatic and tectonic erosive actions on the continents, and related to eustasy, subsidence and isostasy, the sediment in a deep basin is the main recorder of these processes. Nevertheless, defining and quantifying the relative roles of parameters that interact to give the final sedimentary architecture is not a simple task. Using a 3D‐grid of seismic and wide‐angle data, boreholes and numerical stratigraphic modelling, we propose here a quantification of post‐rift vertical movements in the Provençal Basin (West Mediterranean) involving three domains of subsidence: seaward tilting on the platform and the slope and purely vertical subsidence in the deep basin. These domains fit the deeper crustal domains highlighted by previous geophysical data. Post‐break‐up sedimentary markers may therefore be used to identify the initial hinge lines of the rifting phase and the subsidence laws.  相似文献   

3.
Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N–S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12–13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.  相似文献   

4.
系统设计了信息系统包括数据库结构并制订了各种资料分类、编码和命名等规定,为整个中国边缘海新生代沉积盆地的基底特征及其构造格局研究提供一致的标准,便于进行综合对比研究。在ArcInfo下以潮汕坳陷区为例,建立了包括重磁异常及其处理结果、海底地形图、海水深度资料、断裂分布,重磁基底深度、中生界厚度、火成岩分布等的地质、地球物理数据库。  相似文献   

5.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

6.
南海中部和北部海域重力异常特征与地壳构造关系   总被引:1,自引:0,他引:1       下载免费PDF全文
1976年,中国科学院南海海洋研究所与国家海洋局南海分局共同协作使用“向阳红”五号海洋调查船,利用西德GSS-2型海洋重力仪和我国的CHHK-1型核子旋进式磁力仪,在南海珠江口外海域(北纬22°—17°、东经113°50′—115°10′),进行约3000公里的海洋重力、磁力和测深。设计的测线方向为南北向,测线距为10海里。  相似文献   

7.
Gravity signals from the lithosphere in the Central European Basin System   总被引:1,自引:0,他引:1  
We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian–Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic–Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS.Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north–east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco-Norwegian orogeny. The major part of the NGB is characterized by high-density lithosphere, which includes a high-velocity lower crust (relict of Baltica passive margin) overthrusted by the Avalonian terrane. The short wavelength pattern of the final residuals shows several north–west trending gravity highs between the Tornquist Zone and the Elbe Fault System. The NDB is separated by a gravity low at the Ringkøbing–Fyn high from a chain of positive anomalies in the NGB and the PT. In the NGB these anomalies correspond to the Prignitz (Rheinsberg anomaly), the Glueckstadt and Horn Graben, and they continue further west into the Central Graben, to join with the gravity high of the Central North Sea.  相似文献   

8.
南海西北部重磁场及深部构造特征   总被引:9,自引:3,他引:9  
通过对南海重磁数据的重新处理,得到南海西北部自由空间重力异常图、布格重力异常图、磁异常图和化极磁异常图,并对所反映的地球物理场特征加以分析。根据重力场资料对研究区的地壳结构进行了反演计算,结果表明地壳厚度在10~38km之间,总的趋势由陆向洋逐渐减薄,对应于地壳类型从陆壳、过渡壳到洋壳的分布特征。根据磁力资料计算了居里面深度,其埋深变化于11~27km之间,在陆区居里面是下地壳顶界面和莫霍面之间的另一个物性界面,而在海区则接近于莫霍面埋深。  相似文献   

9.
Most of interpretational tasks in geophysics require an interdisciplinary knowledge and integration of information from comprehensive data bases. Towards this end a combination of different geophysical surveys employing seismics, gravity and magnetics, provides new insights into the structures and tectonic evolution of natural deposits together with geological and petrological studies. No doubt, any interdisciplinary approach is essential for numerical modelling of these structures and the processes acting on it. The interpretation of garvity and magnetics by 3D modelling requires data from other independent sources, due to the ambiguity of these methods.In close cooperation with geologists and computer scientists we are developing an object oriented model of the southern rim of the Northwest German Basin which consists of information from industry wells, stratigraphy and geophysical parameters (e.g. density and susceptibility). GOCAD is used for geometrical modelling purposes, IGMAS handels the interactive modifications of geophysical model parameters and geometry. Both modelling programs are supported by an object oriented data base system which will guarantee the consistency of data and models.Combined interpretations of the southern basin are presented and show, how the information from different geo-disciplines is visualized in order to ease the modelling process.  相似文献   

10.
The kinematic evolution of the Barinas–Apure Basin and the southern Mérida Andes from Lower Miocene to the Present is numerically modelled using flexural isostatic theory and geophysical and geological data. Two published regional transects are used to build up a reference section, which is then used to constrain important parameters (e.g. shortenings and sedimentary thicknesses) for the flexural modelling. To control the location of the main fault system in the flexural model earthquake information is also used. The estimated flexural elastic thickness of the South American lithosphere beneath the Barinas–Apure Basin and the Mérida Andes Range is 25 km. The value for the final total shortening is 60 km. The flexural isostatic model shows that the Andean uplift has caused the South American lithosphere subsidence and the development of the Barinas–Apure Basin.In addition, gravity modelling was used to understand deep crustal features that could not be predicted by flexural theory. Consequently, the best-fit flexural model is used to build a gravity model across the Mérida Andes and the Barinas–Apure Basin preserving the best-controlled structural features from the flexural modelling (e.g. basin wavelength and depth) and slightly changing the main bodies density values and deep crustal structures. The final gravity model is intended to be representative of the major features affecting the gravity field in the study area. The predicted morphology in the lower crustal level of the final gravity model favours the hypothesis of a present delamination or megathrust of the Maracaibo crust over the South American Shield. This process would use the Conrad discontinuity as a main detachment surface within an incipient NW dipping continental subduction.  相似文献   

11.
An integrated interpretation of the seismic refraction and wide-angle reflection data, geological and structural details, bore-hole litholog information and gravity particulars along Beliator-Burdwan-Bangaon deep seismic sounding (DSS) profile in West Bengal basin has helped in getting a crustal density model. This model is consistent with all available surface and bore-hole geophysical data that can realistically explain the trend, shape and magnitude of gravity data across the West Bengal basin. The present exercise pointed out that the thick sedimentary column (with thickening trend towards east), conspicuous lateral variations in the Moho configuration (with a prominent 40 km wide domal feature covering the eastern part of the stable shelf and trie western segment of the deep basinal part) coupled with the structural trends in the basement, mid and lower crustal columns have combinedly contributed to the gravity effect and as such the prominent lateral variations in the Bouguer gravity anomalies could be mainly attributed to regionally extending causative factors. The synthesis clearly points out the need to take proper care in selecting the density values as direct conversion of velocities into densities, adapting well-known conversion formulae, does not always hold good specially in the eastern part of the West Bengal basin where a huge thickness of sediments (velocities ranging between 4 to 5 km/sec) of high density 2.6 to 2.8 g/cm3 are sandwiched between younger sediments and the crystalline basement.  相似文献   

12.
The Cambro-Ordovician Jaibaras Rift is a NE–SW trending elongated feature, controlled by the Transbrasiliano lineament, locally known as Sobral-Pedro II shear zone (SPIISZ). An integrated study of geophysical data (gammaspectrometry, magnetometry and gravimetry) was undertaken in the Jaibaras Rift area, between Ceará Central (CCD) and Médio Coreaú domains (MCD), northwest Borborema Province. Geophysical data were interpreted qualitatively and quantitatively in order to understand the tectono-magmatic relations and rift formation based on the main geophysical lineaments, source geometry and depth, and separation of geophysical domains. In addition, a 2D gravity model was generated. The results show a structural partition characterized by NE–SW lineaments and E–W inflexions, where CCD presents a relatively mild magnetic field, whilst the MCD field is more disturbed. The Jaibaras Rift is characterized by positive magnetic and gravity anomalies. The SPIISZ, which corresponds to the SE fault edge of the Jaibaras Rift, is marked by strong magnetic dipoles and strong gravity gradients in the profile, showing the deep character of the Transbrasiliano lineament in the region. The Café-Ipueiras fault, at the NW edge of the rift, is well marked in gravity profiles, but displays low contrast of the magnetic field. Interpretation of the gravimetric anomaly map allowed to recognizing the main NE–SW axis, with alternation of maxima and minima in MCD. A regional gravity gradient reveals significant lateral density variation between the MCD and CCD perpendicular to the SPIISZ, emphasizing it as a main continental suture zone between crustal blocks.  相似文献   

13.
The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to understand the sedimentation history and also to carry out integrated gravity interpretation. Detailed seismic reflection data in the basin reveals that:(1) the Alleppey Platform is associated with a basement high in the west of its present-day geometry(as observed in the time-structure map of the Trap Top(K/T boundary)),(2) the platform subsequently started developing during the Eocene period and attained the present geometry by the Miocene and,(3) both the Alleppey platform and the Vishnu fracture zone have had significant impact on the sedimentation patterns(as shown by the time-structure and the isochron maps of the major sedimentary horizons in the region). The 3-D sediment gravity effect computed from the sedimentary layer geometry was used to construct the crustal Bouguer anomaly map of the region.The 3-D gravity inversion of crustal Bouguer anomaly exhibits a Moho depression below the western border of the platform and a minor rise towards the east which then deepens again below the Indian shield. The 2-D gravity modelling across the Alleppey platform reveals the geometry of crustal extension,in which there are patches of thin and thick crust. The Vishnu Fracture Zone appears as a crustal-scale feature at the western boundary of the Alleppey platform. Based on the gravity model and the seismic reflection data, we suggest that the basement high to the west of the present day Alleppey platform remained as a piece of continental block very close to the mainland with the intervening depression filling up with sediments during the rifting. In order to place the Alleppey platform in the overall perspective of tectonic evolution of the Kerala-Konkan basin, we propose its candidature as a continental fragment.  相似文献   

14.
The employed method of 3D gravity modeling is based on calculation of the gravity effects of the main density boundaries of the lithosphere, subtraction of these effects from the observed gravity field, and the subsequent conversion of the residual gravity anomalies first to the Moho depth and then to the total thickness of the Earth's crust and the thickness of its consolidated part. On the modeling, we also took into account the gravity effects due to an increase in the sediment density with increasing sediment depth and a rise of the top of the asthenosphere beneath the mid-ocean Gakkel Ridge. The resulting 3D models of the Moho topography and crustal thickness are well consistent with the data of deep seismic investigations. They confirm the significant differences in crustal structure between the Eurasian and Amerasian Basins and give an idea of the regional variations in crustal thickness beneath the major ridges and basins of the Arctic Ocean.  相似文献   

15.
The decrease of density contrast with depth in sedimentary basins is approximated by an exponential function. The anomaly equation, in frequency domain, of a prismatic model with an exponential density function is derived. The method has been extended to derive the Fourier transforms of the gravity anomalies of the sedimentary basin, wherein the basin is viewed as vertical prisms placed in juxtaposition. The gravity anomalies of the sedimentary basin are obtained by taking the inverse Fourier transforms. Filon’s method has been extended for calculating accurate inverse Fourier transforms. The accuracy of the method has been tested using a synthetic example. A combination of space and frequency domain methods have been developed for inversion of gravity anomalies over the sedimentary basin. The method has been applied to interpret one synthetic profile and one field profile over the Godavari basin. The method developed in this paper to calculate the inverse Fourier transforms yields continuous spectrum with accurate values. The maximum depth deduced from the gravity anomalies is of the same order as the depth encountered to the basement at the Aswaraopeta borewell.  相似文献   

16.
A 3D structural modelling of the Permian–Mesozoic Polish Basin was performed in order to understand its structural and sedimentary evolution, which led to basin maturation (Permian–Cretaceous) and its tectonic inversion (Late Cretaceous–Paleogene). The model is built on the present-day structure of the basin and comprises 13 horizons within the Permian to Quaternary rocks. The analysis is based on 3D depth views and thickness maps. The results image the basin-scale symmetry, the perennial localization of the NW–SE-oriented basin axis, the salt movements due to tectonics and/or burial, and the transverse segmentation of the Polish Basin. From these observations, we deduce that salt structures are correlated to the main faults and tectonic events. From the model analysis, we interpret the stress conditions, the timing, and the geometry of the tectonic inversion of the Polish Basin into a NW–SE-oriented central horst (Mid-Polish Swell) bordered by two lateral troughs. Emphasis is placed on the Zechstein salt, considering its movements during the Mesozoic sedimentation and its decoupling effect during the tectonic inversion. Moreover, we point to the structural control of the Paleozoic basement and the crustal architecture (Teisseyre–Tornquist Zone) on the geometry of the Polish Basin and the Mid-Polish Swell.  相似文献   

17.
An academic geophysical research as a regional gravity survey was made during 1994 in the Western White Nile to infer the shallow crustal structures in the area. The result of the survey was compiled as a Bouguer anomaly map with a contour interval of 2 ×10-5m/s2. It is found that the negative residual anomalies are related to the Upper Cretaceous sediments (Nubian Sandstone Formation) filling all depressions in the Basement complex surface while the positive residual anomalies are attributed to the relatively shallow or outcropping Basement rocks and the steep gravity gradients are resulting from the sharp contacts between the sedimentary infill and the Basement rocks. To define the geological structures in the area, 9 profiles were studied. For each of the profiles, measured and computed Bouguer gravity anomalies, crustal density model, subsurface geology evaluation were performed. A G-model computer program was applied in the gravity modeling, which is based on the line-integral method of gravity computation. A geological/structural map was proposed showing inferred sedimentary basins, faulting troughs and uplifted Basement block and tectonic trends. The basins are believed to be fault-controlled which developed by extensional tectonics (pull-apart mechanism). As for the mechanism and cause of faulting, the area is considered as a part of the Central Sudan rift system which had been subjected to several tectonic events since Early Cambrian to Tertiary times which resulted in the formation of several fracture systems associated with block subsidence, rifting and basin formation.  相似文献   

18.
This work considers the tectonics of the southeastern portion of the South American Platform based on new geological and geophysical grounds. For the last decade, only three (Amazonic, São Francisco and La Plata) of the many other cratonic blocks have been attributed/remarked to the South America portion for most of the usual Rodinia reconstitutions. The possibility of the existence of other blocks has rarely been mentioned. The postulation of the presence of a considerable Paleoproterozoic (pre-Brasiliano) fragment as part of Paraná Basin basement is highly probable. In order to infer the basement structure of Paraná Basin, previous to the sedimentation process, an isostatic modeling was applied to a large-scale gravity survey looking to correlate topographic and gravity anomalies caused by sub-surface loads. The Bouguer anomaly obtained from the gravity survey represents the crustal contribution of crystalline basement, in addition to the sedimentary and volcanic layers of the basin. Following the isostatic modeling and the basin load stripping, the residual anomaly allows observing similarities between the basement gravity signature and outcropping units. Besides, the stress pattern of the two earlier events obtained through the back stripping analysis presents a geographically coincident maximum, and a new E-SE high emerging for the second event, suggesting continuous change of the stress field as a precursor for South American plate rotation. The evident correlation between gravity highs and main attenuation suggests the presence of some pre-existing suture zones. The weakened lithosphere during Ordovician and Carboniferous provided the magma conduits to form in Early Cretaceous tectonic stress field pattern. The resultant mosaic of gravity blocks and the main faults site give support to the presence of this cratonic Proterozoic unit, here on referred to as the Paranapanema Block, which had been neglected in most of the models reported for the reconstruction of Gondwana (and Rodinia).  相似文献   

19.
Gravity data have been used to examine the crystalline basement morphology along five geotransects in Somalia defined by the Global Geotransect Project (Monger 1989). The gravity data were digitized from the 1:1 000 000 Gravity Anomaly Map of Somalia produced by the African Gravity Project. After the removal of the non-crustal wavelength anomalies from the observed gravity field, the remaining gravity anomalies were interpreted in terms of 2.5D crustal models. Available geophysical and well data, and other geological information, were used as constraints for the construction of the crustal sections. Mean densities varying from 3.30 to 3.15 g cm−3 were used for dense bodies observed on the lower continental crust of the southern Somali basins. A density of 3.00 g cm−3 was given to the oceanic crust offshore. The density of the crystalline basement and the overlying sediments were, respectively, assumed to be 2.85 g cm−3 and 2.46 g cm−3. Coherent and incoherent marine sediments were given densities varying from 1.70 g cm−3 to 2.30 g cm−3. The results of the 2.5D gravity modelling indicate that the basement beneath the southern Somali basins is partially or totally transformed to denser material and that, just a few hundred kilometres offshore from Somalia, the basement is of an oceanic nature.  相似文献   

20.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号