首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
增大柱端抗弯承载力是抗震"能力设计"措施中引导钢筋混凝土框架结构形成梁铰型有利耗能机构的关键措施。本文以6层确定性钢筋混凝土框架结构为分析对象,通过结构易损性分析评估了不同强柱系数取值对钢筋混凝土框架结构抗震性能的影响。结构易损性分析表明增大柱端抗弯承载力是改善结构抗震性能的有效措施,增大强柱系数提高了结构的变形能力,使不同破坏极限状态之间形成较大的"梯度",对防止强烈地震作用下结构的突然倒塌提供了预示。结构易损性曲线对评估结构抗震性能、选用合适的目标强柱系数提供了量化标准。  相似文献   

2.
Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance‐based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column‐weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake‐table tests were conducted on a 2/5‐scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of ‘immediate occupancy’, with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
钢筋混凝土结构震后损伤鉴定中,最常见的方式是鉴定者观察房屋破坏现象,根据经验给出震损等级。该方法直观高效,但对鉴定者的专业经验要求较高,且鉴定结果的主观差异较大。对此以RC框架柱为对象,开展了基于震损现象的震损量化鉴定方法研究:在RC框架柱震损现象量化试验基础上给出基于构件骨架曲线特征阶段的震损分级方法;对7个RC框架柱试件进行了改进Park-Ang损伤指数分析,建立了RC框架柱损伤指数-震损分级-震损现象的对应关系;基于RC框架柱的试验结果及典型震害编制了RC框架柱震损图集,并给出了使用图集进行框架柱震损鉴定的流程及方法。使用该方法对2个实际震害中的RC框架柱进行了震损鉴定,可为更加客观以及准确地开展钢筋混凝土结构的震损鉴定提供参考。  相似文献   

4.
This paper presents a new FRP retrofi tting scheme to strengthen local beam-column joints in reinforced concrete(RC) frames.The new retrofi tting scheme was proposed following a preliminary study of four different existing retrofi tting schemes.A numerical simulation was conducted to evaluate the effectiveness of FRP-strengthened reinforced concrete frames by bridging behavior of local joints to the whole structure.Local confi nement effects due to varying retrofi tting schemes in the joints were simulated in the frame model.The seismic behavior factor was used to evaluate the seismic performance of the strengthened RC frames.The results demonstrated that the new proposed retrofi tting scheme was robust and promising,and fi nite element analysis appropriately captured the strength and global ductility of the frame due to upgrading of the local joints.  相似文献   

5.
The seismic response of non‐ductile reinforced concrete (RC) buildings can be affected by the behaviour of beam‐column joints involved in the failure mechanism, especially in typical existing buildings. Conventional modelling approaches consider only beam and column flexibility, although joints can provide a significant contribution also to the overall frame deformability. In this study, the attention is focused on exterior joints without transverse reinforcement, and a possible approach to their modelling in nonlinear seismic analysis of RC frames is proposed. First, experimental tests performed by the authors are briefly presented, and their results are discussed. Second, these tests, together with other tests with similar features from literature, are employed to calibrate the joint panel deformability contribution in order to reproduce numerically the experimental joint shear stress–strain behaviour under cyclic loading. After a validation phase of this proposal, a numerical investigation of the influence of joints on the seismic behaviour of a case study RC frame – designed for gravity loads only – is performed. The preliminary failure mode classification of the joints within the analysed frame is carried out. Structural models that (i) explicitly include nonlinear behaviour of beam‐column joints exhibiting shear or anchorage failure or (ii) model joints as elements with infinite strength and stiffness are built and their seismic performance are assessed and compared. A probabilistic assessment based on nonlinear dynamic simulations is performed by means of a scaling approach to evaluate the seismic response at different damage states accounting for uncertainties in ground‐motion records. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
为了对混凝土框架结构的地震破坏机制和抗震性能进行控制,在框架柱中配置高强钢筋,并将纤维增强混凝土(FRC)用于框架结构的预期损伤部位。结构柱中的高强钢筋用来减小结构的残余变形,FRC材料用来增加结构的耗能能力和损伤容限。设计了三个框架,采用动力弹塑性时程分析方法进行分析。研究结果表明,采用高强钢筋提高了结构的整体承载能力,在层间侧移角达到3%之前避免了柱铰的出现(包括底层柱底),并且减小了结构的残余变形;预期损伤部位采用FRC材料能够提高结构的塑性耗能。  相似文献   

7.
A new structural system called a stepped wall-frame structure is proposed in this study to solve the bottom yielding problem of RC frames, which widely occurred during previous earthquakes such as the Wenchuan and Yushu earthquakes in China. A 1/5 scale ordinary RC frame model and a stepped wall-frame model were subjected to shake table motions together to study the seismic behavior of the new structural system. This paper presents the dynamic characteristics, the seismic responses and the failure and collapse mechanism of the two models under low, moderate and high intensity shaking. The test results and further analysis demonstrate that the seismic performance of stepped wall-frame structures is superior to ordinary RC frames in terms of the well-controlled deformation pattern and more uniformly distributed damage. The stepped wall can effectively suppress the bottom yielding mechanism, and is simple, economical and practical for engineering practice.  相似文献   

8.
总结采用梁有效翼缘来考虑楼板及配筋对“强柱弱梁”机制形成的影响的实验和数值仿真研究。基于SAP2000采用三种侧向加载模式对RC框架结构不带楼板、不带楼板考虑梁刚度放大、带楼板的三个模型进行pushover分析,对力与位移的关系曲线、塑性铰的出铰顺序以及顶点位移与层间位移等方面进行探讨。结果表明:三个模型的“强柱弱梁”现象不带楼板的纯框架结构最明显,考虑梁刚度放大的模型次之,带楼板结构最不明显,证明负弯矩承载力和刚度等反映“强柱弱梁”的参数及塑性铰的出现顺序与楼板、板内配筋存在明显的对应关系;楼板及配筋影响框架结构的整体变形性能和塑性耗能能力,是抗震延性机制实现的重要影响因素。在后续的结构设计中,建议考虑实际楼板和钢筋建模进行计算分析。  相似文献   

9.
周晓洁    程昌恽    杜金鹏    陈康    陈培奇   《世界地震工程》2022,38(2):046-57
为进一步改善框架结构平面内和平面外抗震性能,本文提出带X形斜撑的新型砌体填充墙构造方案,并进行了4榀蒸压加气混凝土砌块砌体填充墙框架结构试验,以研究墙体构造措施和墙-框连接方式对框架结构抗震性能的影响。首先进行平面内水平低周往复荷载试验,随后进行历经平面内损伤的平面外单调静力加载试验,最后进行承载力、刚度退化和耗能能力等抗震性能指标的分析。结果表明:墙-框柔性连接方案下,填充墙框架结构的平面内及平面外水平承载力和初始刚度均小于刚性连接方案,而变形能力、耗能能力和位移延性等性能指标均比刚性连接表现更好;墙-框柔性连接且填充墙带X形斜撑框架结构的平面内及平面外抗震性能指标均有明显改善,更有利于抗震。  相似文献   

10.
Simplified seismic sidesway collapse analysis of frame buildings   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper presents the development and assessment of a simplified procedure for estimating the seismic sidesway collapse margin ratio of building structures. The proposed procedure is based on the development of a robust database of seismic peak displacement responses of nonlinear single‐degree‐of‐freedom systems for various seismic intensities and uses nonlinear static (pushover) analysis without the need for nonlinear time history dynamic analysis. The proposed simplified procedure is assessed by comparing its collapse capacity predictions on 72 different building structures with those obtained by nonlinear incremental dynamic analyses. The proposed simplified procedure offers a simple, yet efficient, computational/analytical tool that is capable of predicting collapse capacities with acceptable accuracy for a wide variety of frame building structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Structural health monitoring of RC structures under seismic loads has recently attracted much attention in the earthquake engineering research community. In this study, a piezoceramic-based device called "smart aggregate" was used for the health monitoring of RC frame structures under earthquake excitations. Three RC moment frames instrumented with smart aggregates were tested using a shaketable with different ground excitation intensities. Distributed piezoceramic- based smart aggregates were embedded in the RC structures and used to monitor their health condition during the tests. The sensitivity and effectiveness of the proposed piezoceramic-based approach were investigated and evaluated by analyzing the measured responses. The displacement ductility demand of the structural members was calculated and compared with the damage index determined from the health monitoring system. The comparison shows that the damage index is compatible with the calculated ductility demand.  相似文献   

12.
13.
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.  相似文献   

14.
The response of low‐ductility reinforced concrete (RC) frames, designed typically for a non‐seismic region, subjected to two frequencies of base excitations is studied. Five half‐scaled, two‐bay, two‐storey, RC frames, each approximately 5 m wide by 3.3 m high, were subjected to both horizontal and/or vertical base excitations with a frequency of 40 Hz as well as a lower frequency of about 4 Hz (close to the fundamental frequency) using a shake table. The imposed acceleration amplitude ranged from 0.2 to 1.2g. The test results showed that the response characteristics of the structures differed under high‐ and low‐frequency excitations. The frames were able to sustain high‐frequency excitations without damage but were inadequate for low‐frequency excitations, even though the frames exhibited some ductility. Linear‐elastic time‐history analysis can predict reasonably well the structural response under high‐frequency excitations. As the frames were not designed for seismic loads, the reinforcement detailing may not have been adequate, based on the crack pattern observed. The effect of vertical excitation can cause significant additional forces in the columns and moment reversals in the beams. The ‘strong‐column, weak‐beam’ approach for lateral load RC frame design is supported by experimental observations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Improving seismic performance is one of the critical objectives in earthquake engineering. With the development of economy and society, reparability and fast resilience of a structure are becoming increasingly important. Reinforced concrete (RC) frame structure is prone to soft story mechanism. As a result, deformation and damage are so concentrated that reparability is severely hampered. Rocking wall provides an available approach for deformation control in RC frame by introducing a continuous component along the height. Previous researches mostly focus on seismic responses of rocking wall frame structures, while damage mode and reparability have not been investigated in detail. In this study, a novel infilled rocking wall frame (IRWF) structure is proposed. A half‐scaled IRWF model was designed according to Chinese seismic design code. The model was subjected to cyclic pushover testing up to structure drift ratio of 1/50 (amplitude 1/50), and its reparability was evaluated thereafter. Retrofit was implemented by wrapping steel plates and installing friction dampers. The retrofitted model was further loaded up to amplitude 1/30. The IRWF model showed excellent reparability and satisfactory seismic performance on deformation control, damage mode, hysteresis behavior, and beam‐to‐column joint rotation. After retrofitting, capacity of the model was improved by 11% with limited crack distribution. The model did not degrade until amplitude 1/30, due to shear failure in frame beams. The retrofit procedure was proved effective, and reparability of the IRWF model was demonstrated. Seismic resilience tends to be achieved in the proposed system.  相似文献   

16.
张家广  吴斌  梅洋 《地震学刊》2014,(5):637-642
提出了一种既有钢筋混凝土框架结构的抗震加固方法,该法采用防屈曲支撑提高框架结构体系的水平承载力和耗能能力,利用外包钢进一步提高柱子的抗弯和抗剪承载力。采用开源有限元程序OpenSees,分别建立空钢筋混凝土框架和防屈曲支撑加固钢筋混凝土框架的分析模型,对2榀钢筋混凝土框架的抗震性能进行模拟。防屈曲支撑采用了弹塑性桁架单元模型,加固框架柱混凝土考虑了外包钢的约束作用。将分析结果与拟静力试验结果进行比较,以检验分析模型的准确性,以及研究防屈曲支撑和外包钢对混凝土框架抗震性能的影响。分析结果表明,数值模拟与试验结果吻合较好,验证了基于OpenSees建立的数值模型的准确性;外包钢有效改善了框架柱的抗弯承载力和变形能力;防屈曲支撑显著提高了加固框架体系的水平刚度、水平承载力和耗能能力。  相似文献   

17.
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio,shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.  相似文献   

18.
Unreinforced masonry (URM) infill panels are widely used as partitions in RC frames and typically considered as non‐structural elements in the design process. However, observations from recent major earthquakes have shown that under seismic excitation, the structural interaction between columns and infill walls can significantly alter the structural behaviour, thus causing catastrophic consequences. The purpose of this research was to propose and test an innovative low seismic damage detailing method, which isolates the infill panel from bounding columns with finite width vertical gaps during the infill panel construction phase and deploys steel wire connections in mortar layers anchored to columns. Taking into account the similitude requirements, a total of six one‐third scale, single‐storey single‐bay RC frames with different infill configurations and flexible connection details were carefully designed and tested on a shake‐table. Three real earthquake records were selected and scaled to ascending intensity levels and used as input signals. A series of thorough investigations including dynamic characteristics, hysteretic behaviour, failure mechanisms, out‐of‐plane vulnerabilities and the effect of different gap filling materials and load transfer mechanisms were rigorously studied. The experimental results indicate that the undesirable interaction between infill panels and bounding frame is significantly reduced using the proposed low seismic damage detailing concept. Direct shear failure of columns at an early stage is prevented, and structural redundancy at high levels of excitation can be provided. In general, the structural stability and integrity, and displacement ductility of infilled RC frames can remarkably be improved. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
A procedure for treating the P– Δ effect in the direct displacement‐based seismic design of regular steel moment resisting frames with ideal elastoplastic material behaviour is proposed. A simple formula for the yield displacement amplification factor as a function of ductility and the stability coefficient is derived on the basis of the seismic response of an inelastic single degree‐of‐freedom system taking into account the P– Δ effect. Extensive parametric seismic inelastic analyses of plane moment resisting steel frames result in a simple formula for the dynamic stability coefficient as a function of the number of stories of a frame and the column to beam stiffness ratio. Thus, the P– Δ effect can be easily taken into account in a direct displacement‐based seismic design through the stability coefficient and the yield displacement amplification factor. A simple design example serves to illustrate the application of the proposed method and demonstrate its merits. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号