首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fan  Xiang  Zhang  Jing-xin  Liu  Hua 《中国海洋工程》2019,33(5):601-607
The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface.This article focuses on the investigation of the steep regular wave run-up on a single vertical cylinder by solving the Navier-Stokes equations. A numerical wave tank is established based on the open-source package to simulate the wave scattering induced by a vertical cylinder. The VOF method is applied to capture the large deformation and breaking of the free surface. The numerical model is validated by experimental results. The relative wave run-ups on the front face and the back face along the centerline of a cylinder are analyzed. The changes of the relative run-ups with the wave steepness, the relative diameter and the relative depth are studied. It is found that the relative run-ups on the front face and the back face of the cylinder depend mainly on the wave steepness and the relative diameter,while the dependence on the relative depth is weak. The empirical formulae are proposed to calculate the relative run-ups in terms of the wave steepness of incident regular waves and the relative diameter of a cylinder.  相似文献   

2.
Second-order wave forces on a large diameter vertical circular cylinder, computed according to a semi-analytic nonlinear diffraction theory, are compared to results of 22 laboratory experiments with regular waves. In general, predicted forces agree quite well with measured forces. In most tests, both measured and predicted maximum forces exceeded linear theory by 5 to 15%. In a few cases, however, the measured forces were less than those predicted by linear theory, in contrast to the second-order predictions. It is shown that these results are related to the phasing of various linear and nonlinear wave force components, and are consistent with those obtained by other investigators.  相似文献   

3.
Second-Order Wave Diffraction Around 3-D Bodies by A Time-Domain Method   总被引:1,自引:1,他引:1  
BAI  Wei 《中国海洋工程》2001,(1):73-84
A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.  相似文献   

4.
During the last decade, several offshore wind-farms were built and offshore wind energy promises to be a suitable alternative to provide green energy. However, there are still some engineering challenges in placing the foundations of offshore wind turbines. For example, wave run-up and wave impacts cause unexpected damage to boat landing facilities and platforms. To assess the forces due to wave run-up, the distribution of run-up around the pile and the maximum run-up height need to be known. This article describes a physical model study of the run-up heights and run-up distribution on two shapes of foundations for offshore wind turbines, including both regular and irregular waves. The influence of wave steepness, wave height and water depth on run-up is investigated. The measured run-up values are compared with applicable theories and previous experimental studies predicting run-up on a circular pile.  相似文献   

5.
为了研究波浪非线性对爬高的影响,解决防波堤等工程设计的实际问题,通过对数学模型试验、物理模型试验、规范公式得到的防波堤波浪爬高对比分析,分析了非线性主要影响参数厄塞尔数、相对水深和波陡对波浪爬高的影响规律,指出规范公式计算时存在的缺陷,并对其计算公式、适用范围进行修正、拟合,得到了强非线性规则波浪爬高的计算方法,可适用于斜坡堤断面的波浪爬高计算,与物理模型试验和数学模型试验结果对比表明,新的波浪爬高计算公式具有较好的计算精度,研究结果可为防波堤等实际工程设计提供重要参考。  相似文献   

6.
We study the run-up of long solitary waves of different polarities on a beach in the case of composite bottom topography: a plane sloping beach transforms into a region of constant depth. We confirm that nonlinear wave deformation of positive polarity (wave crest) resulting in an increase in the wave steepness leads to a significant increase in the run-up height. It is shown that nonlinear effects are most strongly pronounced for the run-up of a wave with negative polarity (wave trough). In the latter case, the run-up height of such waves increases with their steepness and can exceed the amplitude of the incident wave.  相似文献   

7.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

8.
The dynamic pressures due to random waves of predefined spectral characteristics exerted on a semicircular breakwater model at five different elevations along the depth are measured. In addition, the wave run-up on the model and its reflection characteristics are measured. The results on the variation of the frequency pressure spectra along the depth and the run-up spectra are reported in this paper. The average spectral characteristics as well as statistical properties of the above two parameters are presented. The average reflection coefficient is reported as a function of the wave steepness, described as the ratio of the significant wave height to the square of the peak period.  相似文献   

9.
《Coastal Engineering》2005,52(8):655-672
This paper describes the extension of a finite difference model based on a recently derived highly accurate Boussinesq formulation to include domains having arbitrary piecewise-rectangular bottom-mounted (surface-piercing) structures. The resulting linearized system is analyzed for stability on a structurally divided domain, and it is shown that exterior corner points pose potential stability problems, as well as other numerical difficulties. These are mainly due to the discretization of high-order mixed-derivative terms near these points, where the flow is theoretically singular. Fortunately, the system is receptive to dissipation, and these problems can be overcome in practice using high-order filtering techniques. The resulting model is verified through numerical simulations involving classical linear wave diffraction around a semi-infinite breakwater, linear and nonlinear gap diffraction, and highly nonlinear deep water wave run-up on a vertical plate. These cases demonstrate the applicability of the model over a wide range of water depth and nonlinearity.  相似文献   

10.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   

11.
On the basis of the approximate analytical solution for the nonlinear shallow water equations of Antuono and Brocchini [M. Antuono & M. Brocchini, The boundary value problem for the nonlinear shallow water equation, Stud. Appl. Maths, 119, 71–91 (2007).], we propose useful regression curves for the prediction of maximum run-up and dynamical forces in the swash zone on a frictionless, uniformly sloping beach. For the first time the dependence of the results on both the wave height and the wave steepness is analyzed in detail providing formulae able to describe a wide class of wave inputs. Finally, the regression formulae are validated through comparison with maximum run-up laws and breaking conditions already available in the literature, the present model results appearing to better account for nonlinear effects.  相似文献   

12.
Based on the 1st order cnoidal wave theory, the nonlinear wave diffraction around a circular cylinder in shallow water is studied in this paper. The equation of the wave surface around the cylinder is formulated and by using this formula the wave surface elevation on the cylinder surface can be obtained. In this paper, the formula for calculating the cnoidal wave force on a circular cylinder is also derived. For the wave conditions which are often encountered in practical engineering designs, the ratios of the nonlinear wave forces to the linear wave forces are calculated, and the results are plotted in this paper for design purposes. In order to verify the theoretical results, model tests are conducted. After comparing the test results with the theoretical ones, it is concluded that, in shallow water, for the case of T g / d~(1/2) > 8-10 and H / d > 0.3, the cnoidal wave theory should be used to calculate the wave action on a cylindrical pier.  相似文献   

13.
A series of hydraulic model tests has been carried out in a glass wave flume to investigate the influences of wave height, wave period, wave steepness, surf similarity parameter, roughness, layer thickness and porosity on wave run-up and overtopping of 1:2 sloped impermeable and permeable breakwaters fronted by a 1:10 gentle, smooth beach slope. The analysis of results involves the correlation between the overtopping energy transfer with the relative wall height and the relationship between wave run-up and overtopping rate. Further, measured wave run-up and overtopping rates are compared with the results given in the Shore Protection Manual (1984), Automated Coastal Engineering System (1992)and results of other investigators.  相似文献   

14.
-In this paper, an analytical solution in the outer region of finite water depth is derived for the second-order diffraction potential, which gives a clear physical meaning of the wave transmission and reflection characteristics in the far field. A numerical method-simple Green's function technique-for calculating the second-order diffraction potential in the inner region is also described. Numerical results are provided for the second-order wave forces on a semi-submerged cylinder. It is found that the contribution of second-order diffraction potential to second-order wave forces is important. The effect of water depth and submerged depth on the wave force is also discussed.  相似文献   

15.
16.
柏威  滕斌 《海洋工程》2001,19(3):43-50
采用二阶时域理论对非线性波浪在任意三维物体周围的绕射问题进行了研究,对自由表面边界条件进行Taylor级数展开,应用摄动展开可以建立相应的边值问题,而且此边值问题的计算域不随时间变化,运用基于B-样条的边界元方法求解每一时刻的波浪场,二阶自由表面边界条件在时间上进行数值积分,在自由表面加了一个人工阻尼层以避免波浪的反射,速度势分解为已知的入射势和未知的散射势,初始条件采用二阶Stokes波浪场,通过加入物体表面边界条件,得到散射势在时间和空间上的发展,本文对圆柱所受规则波的二阶波浪力和波浪爬高进行了计算,数值结果表明此理论计算准确,效率高,数值稳定。  相似文献   

17.
基于二阶斯托克斯波理论推导了辐射应力的垂向分布表达式,通过算例讨论了辐射应力在深水和有限水深条件下的垂向分布规律,并与基于微幅波理论的辐射应力进行了比较.结果表明,在波浪非线性不强时,基于二阶斯托克斯波理论的辐射应力与基于微幅波理论的辐射应力表达式计算结果接近;而当水深较浅波浪非线性较强时,基于二阶斯托克斯波理论的辐射应力在近表面处明显大于基于微幅波理论的辐射应力.采用二阶斯托克斯波理论推导的波浪辐射应力更为合理地反映了波浪非线性效应.  相似文献   

18.
波浪对上部开孔带内柱的圆筒结构的绕射   总被引:1,自引:0,他引:1  
滕斌  赵明  李玉成 《海洋学报》2001,23(6):133-142
应用透空壁内流体速度与两壁间压力差成正比的线性模型和特征函数展开方法,建立了外壁上部开孔并带有内柱的圆筒结构对波浪绕射的解析解.通过数值计算研究了外壁开孔率的大小、圆筒与内柱半径之比、筒内水深等因素对圆筒上总的波浪作用力和圆筒周围波浪高度的影响.经数值研究发现随着外壁开孔率的增大圆筒迎浪端的波浪高度和圆筒结构上总的波浪力明显减小,外壁孔隙特性G虚部的增加对波高和波浪力的衰减也有一定的影响;增加圆筒内部的水深可减小圆筒周围的波浪高度,降低圆筒结构上的总波浪力.  相似文献   

19.
Run-up on a large fixed body in waves and current have been calculated using both a fully nonlinear time-domain boundary element model and a finite-order time-domain boundary element model, the latter being correct to second order in the wave steepness and to first-order in the current strength. The results from the two models agree well in the low Froude number and low wave steepness regime. This serves as a cross-validation of the two boundary element models. Furthermore, the two sets of data provide an excellent method for examining the domain of validity for the second-order method. Such limits are, for the case studied, given in terms of maximum Froude number and maximum wave steepness.  相似文献   

20.
The wave crest height qualification checks are required during the wave calibration before the model test in wave basin. However, the reliable criteria of nonlinear wave crest probability distribution in 3-h duration (full-scale) has not been well established yet. We investigate wave crest-height statistics of long-crested nonlinear wave fields using high-order spectral (HOS) method, which can take the effects of both second-order bound waves and third-order free waves into account. The energy dissipation effects due to wave breaking were included by employing an eddy viscosity model. Sensitivity analyses to the wave breaking onset criterion have been performed. Validation is provided by comparing the obtained numerical results with the available calibration test data. Based on extensive and direct numerical simulations, semi-empirical single realization distributions for wave calibration have been developed through 3-parameter Weibull fitting and systematic regression analyses. Particular attention has been paid to the tail of upper bound of wave crest distributions. The effects of wave steepness and water depth on the maximum wave crest height in 3-h duration have been examined. It is found that with the increase of wave steepness, the extreme wave crest height increases until it reaches a critical value. In addition, for the scale water depth kph < 1.36, the maximum crest height decreases as the water depth increases, while in the opposite case the maximum crest height increases as the water depth increases. Moreover, it is confirmed that that the fourth-order nonlinearity does not have significant effects on the distribution of the wave crest height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号