首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Real‐time hybrid simulation (RTHS) is increasingly being recognized as a powerful cyber‐physical technique that offers the opportunity for system evaluation of civil structures subject to extreme dynamic loading. Advances in this field are enabling researchers to evaluate new structural components/systems in cost‐effective and efficient ways, under more realistic conditions. For RTHS, performance metric clearly needs to be developed to predict and evaluate the accuracy of various partitioning choices while incorporating the dynamics of the transfer system, and computational/communication delays. In addition, because of the dynamics of the transfer system, communication delays, and computation delays, the RTHS equilibrium force at the interface between numerical and physical substructures is subject to phase discrepancy. Thus, the transfer system dynamics must be accommodated by appropriate actuator controllers. In this paper, a new performance indicator, predictive performance indicator (PPI), is proposed to assess the sensitivity of an RTHS configuration to any phase discrepancy resulting from transfer system dynamics and computational/communication delays. The predictive performance indicator provides a structural engineer with two sets of information as follows: (i) in the absence of a reference response, what is the level of fidelity of the RTHS response? and (ii) if needed, what partitioning adjustments can be made to effectively enhance the fidelity of the response? Moreover, along with the RTHS stability switch criterion, this performance metric may be used as an acceptance criteria for conducting single‐degree‐of‐freedom RTHS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Real‐time hybrid simulation (RTHS) is an effective and versatile tool for the examination of complex structural systems with rate dependent behaviors. To meet the objectives of such a test, appropriate consideration must be given to the partitioning of the system into physical and computational portions (i.e., the configuration of the RTHS). Predictive stability and performance indicators (PSI and PPI) were initially established for use with only single degree‐of‐freedom systems. These indicators allow researchers to plan a RTHS, to quantitatively examine the impact of partitioning choices on stability and performance, and to assess the sensitivity of an RTHS configuration to de‐synchronization at the interface. In this study, PSI is extended to any linear multi‐degree‐of‐freedom (MDOF) system. The PSI is obtained analytically and it is independent of the transfer system and controller dynamics, providing a relatively easy and extremely useful method to examine many partitioning choices. A novel matrix method is adopted to convert a delay differential equation to a generalized eigenvalue problem using a set of vectorization mappings, and then to analytically solve the delay differential equations in a computationally efficient way. Through two illustrative examples, the PSI is demonstrated and validated. Validation of the MDOF PSI also includes comparisons to a MDOF dynamic model that includes realistic models of the hydraulic actuators and the control‐structure interaction effects. Results demonstrate that the proposed PSI can be used as an effective design tool for conducting successful RTHS. Copyright © 2016 John Wiley & Sons, Ltd  相似文献   

3.
This paper presents real‐time hybrid earthquake simulation (RTHS) on a large‐scale steel structure with nonlinear viscous dampers. The test structure includes a three‐story, single‐bay moment‐resisting frame (MRF), a three‐story, single‐bay frame with a nonlinear viscous damper and associated bracing in each story (called damped braced frame (DBF)), and gravity load system with associated seismic mass and gravity loads. To achieve the accurate RTHS results presented in this paper, several factors were considered comprehensively: (1) different arrangements of substructures for the RTHS; (2) dynamic characteristics of the test setup; (3) accurate integration of the equations of motion; (4) continuous movement of the servo‐controlled hydraulic actuators; (5) appropriate feedback signals to control the RTHS; and (6) adaptive compensation for potential control errors. Unlike most previous RTHS studies, where the actuator stroke was used as the feedback to control the RTHS, the present study uses the measured displacements of the experimental substructure as the feedback for the RTHS, to enable accurate displacements to be imposed on the experimental substructure. This improvement in approach was needed because of compliance and other dynamic characteristics of the test setup, which will be present in most large‐scale RTHS. RTHS with ground motions at the design basis earthquake and maximum considered earthquake levels were successfully performed, resulting in significant nonlinear response of the test structure, which makes accurate RTHS more challenging. Two phases of RTHS were conducted: in the first phase, the DBF is the experimental substructure, and in the second phase, the DBF together with the MRF is the experimental substructure. The results from the two phases of RTHS are presented and compared with numerical simulation results. An evaluation of the results shows that the RTHS approach used in this study provides a realistic and accurate simulation of the seismic response of a large‐scale structure with rate‐dependent energy dissipating devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A series of large‐scale real‐time hybrid simulations (RTHSs) are conducted on a 0.6‐scale 3‐story steel frame building with magneto‐rheological (MR) dampers. The lateral force resisting system of the prototype building for the study consists of moment resisting frames and damped brace frames (DBFs). The experimental substructure for the RTHS is the DBF with the MR dampers, whereas the remaining structural components of the building including the moment resisting frame and gravity frames are modeled via a nonlinear analytical substructure. Performing RTHS with an experimental substructure that consists of the complete DBF enables the effects of member and connection component deformations on system and damper performance to be accurately accounted for. Data from these tests enable numerical simulation models to be calibrated, provide an understanding and validation of the in‐situ performance of MR dampers, and a means of experimentally validating performance‐based seismic design procedures for real structures. The details of the RTHS procedure are given, including the test setup, the integration algorithm, and actuator control. The results from a series of RTHS are presented that includes actuator control, damper behavior, and the structural response for different MR control laws. The use of the MR dampers is experimentally demonstrated to reduce the response of the structure to strong ground motions. Comparisons of the RTHS results are made with numerical simulations. Based on the results of the study, it is concluded that RTHS can be conducted on realistic structural systems with dampers to enable advancements in resilient earthquake resistant design to be achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the development and validation of a real‐time hybrid simulation (RTHS) system for efficient dynamic testing of high voltage electrical vertical‐break disconnect switches. The RTHS system consists of the computational model of the support structure, the physical model of the insulator post, a small shaking table, a state‐of‐the‐art controller, a data acquisition system and a digital signal processor. Explicit Newmark method is adopted for the numerical integration of the governing equations of motion of the hybrid structure, which consists of an insulator post (experimental substructure) and a spring‐mass‐dashpot system representing the support structure (analytical substructure). Two of the unique features of the developed RTHS system are the application of an efficient feed‐forward error compensation scheme and the ability to use integration time steps as small as 1 ms. After the development stage, proper implementation of the algorithm and robustness of the measurements used in the calculations are verified. The developed RTHS system is further validated by comparing the RTHS test results with those from a conventional shaking table test. A companion paper presents and discusses a parametric study for a variety of geometrical and material configurations of these switches using the developed RTHS system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Real‐time substructure testing is a novel method of testing structures under dynamic loading. The complete structure is separated into two substructures, one of which is tested physically at large scale and in real time, so that time‐dependent non‐linear behaviour of the substructure is realistically represented. The second substructure represents the surrounding structure, which is modelled numerically. In the current formulation this numerical substructure is assumed to remain linear. The two substructures interact in real‐time so that the response of the complete structure, incorporating the non‐linear behaviour of the physical substructure, is accurately represented. This paper presents several improvements to the linear numerical modelling of substructures for use in explicit time‐stepping routines for real‐time substructure testing. An extrapolation of a first‐order‐hold discretization is used which increases the accuracy of the numerical model over more direct explicit methods. Additionally, an integral form of the equation of motion is used in order to reduce the effects of noise and to take into account variations of the input over a time‐step. In order to take advantage of this integral form, interpolation of the model output is performed in order to smooth the output. The improvements are demonstrated using a series of substructure tests on a simple portal frame. While the testing approach is suitable for cases in which the physical substructure behaves non‐linearly, the results presented here are for fully linear systems. This enables comparisons to be made with analytical solutions, as well as with the results of tests based on the central difference method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The essence of real time hybrid simulation (RTHS) is the reliance on a physical test (virtual finite element) in support of a numerical simulation, which is unable to properly simulate it numerically. Hence, the computational support for a hybrid simulation is of paramount importance, and one with anything less than a state of the art computational support may defeat the purpose of such an endeavor. A critical, yet often ignored, component of RTHS is precisely the computational engine, which unfortunately has been a bottleneck for realistic studies. Most researches have focused on either the control or on the communication (mostly in distributed, non‐real time hybrid simulation) leaving the third leg of RTHS (computation) ignored and limited to the simulation of simple models (small number of degrees of freedom and limited nonlinearities). This paper details the development of a specialized software written explicitly to perform, single site, hybrid simulation ranging from pseudo‐dynamic to hard real time ones. Solution strategy, implementation details, and actual applications are reported. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Real‐time hybrid testing is a promising technique for experimental structural dynamics, in which the structure under consideration is split into a physical test of key components and a numerical model of the remainder. The physical test and numerical analysis proceed in parallel, in real time, enabling testing of critical elements at large scale and at the correct loading rate. To date most real‐time hybrid tests have been restricted to simple configurations and have used approximate delay compensation schemes. This paper describes a real‐time hybrid testing approach in which non‐linearity is permitted in both the physical and numerical models, and in which multiple interfaces between physical and numerical substructures can be accommodated, even when this results in very stiff coupling between actuators. This is achieved using a Newmark explicit numerical solver, an advanced adaptive controller known as MCSmd and a multi‐tasking strategy. The approach is evaluated through a series of experiments on discrete mass–spring systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Real‐time hybrid simulation (RTHS) has increasingly been recognized as a powerful methodology to evaluate structural components and systems under realistic operating conditions. It is a cost effective approach compared with large scale shake table testing. Furthermore, it can maximally preserve rate dependency and nonlinear characteristics of physically tested (non)structural components. Although conceptually very attractive, challenges do exist that require comprehensive validation before RTHS should be employed to assess complicated physical phenomena. One of the most important issues that governs the stability and accuracy of an RTHS is the ability to achieve synchronization of boundary conditions between the computational and physical substructures. The objective of this study is to propose and validate an H loop shaping design for actuator motion control in RTHS. Controller performance is evaluated in the laboratory using a worst‐case substructure proportioning scheme. A modular, one‐bay, one‐story steel moment resisting frame specimen is tested experimentally. Its deformation is kept within the linear range for ready comparison with the reference closed‐form solution. Both system analysis and experimental results show that the proposed H strategy can significantly improve both the stability limit and test accuracy compared with several existing strategies. Another key feature of the proposed strategy is its robust performance in terms of unmodeled dynamics and uncertainties, which inevitably exist in any physical system. This feature is essential to enhance test quality for specimens with nonlinear dynamic behavior, thus ensuring the validity of the proposed approach for more complex RTHS implementations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Experimental techniques for testing dynamically substructured systems are currently receiving attention in a wide range of structural, aerospace and automotive engineering environments. Dynamic substructuring enables full‐size, critical components to be physically tested within a laboratory (as physical substructures), while the remaining parts are simulated in real‐time (as numerical substructures). High quality control is required to achieve synchronization of variables at the substructuring interfaces and to compensate for additional actuator system(s) dynamics, nonlinearities, uncertainties and time‐varying parameters within the physical substructures. This paper presents the substructuring approach and associated controller designs for performance testing of an aseismic, base‐isolation system, which is comprised of roller‐pendulum isolators and controllable, nonlinear magnetorheological dampers. Roller‐pendulum isolators are typically mounted between the protected structure and its foundation and have a fundamental period of oscillation far‐removed from the predominant periods of any earthquake. Such semi‐active damper systems can ensure safety and performance requirements, whereas the implementation of purely active systems can be problematic in this respect. A linear inverse dynamics compensation and an adaptive controller are tailored for the resulting nonlinear synchronization problem. Implementation results favourably compare the effectiveness of the adaptive substructuring method against a conventional shaking‐table technique. A 1.32% error resulted compared with the shaking‐table response. Ultimately, the accuracy of the substructuring method compared with the response of the shaking‐table is dependent upon the fidelity of the numerical substructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new method, called the equivalent force control method, for solving the nonlinear equations of motion in a real‐time substructure test using an implicit time integration algorithm. The method replaces the numerical iteration in implicit integration with a force‐feedback control loop, while displacement control is retained to control the motion of an actuator. The method is formulated in such a way that it represents a unified approach that also encompasses the effective force test method. The accuracy and effectiveness of the method have been demonstrated with numerical simulations of real‐time substructure tests with physical substructures represented by spring and damper elements, respectively. The method has also been validated with actual tests in which a Magnetorheological damper was used as the physical substructure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Real‐time testing with dynamic substructuring is a novel experimental technique capable of assessing the behaviour of structures subjected to dynamic loadings including earthquakes. The technique involves recreating the dynamics of the entire structure by combining an experimental test piece consisting of part of the structure with a numerical model simulating the remainder of the structure. These substructures interact in real time to emulate the behaviour of the entire structure. Time integration is the most versatile method for analysing the general case of linear and non‐linear semi‐discretized equations of motion. In this paper we propose for substructure testing, L‐stable real‐time (LSRT) compatible integrators with two and three stages derived from the Rosenbrock methods. These algorithms are unconditionally stable for uncoupled problems and entail a moderate computational cost for real‐time performance. They can also effectively deal with stiff problems, i.e. complex emulated structures for which solutions can change on a time scale that is very short compared with the interval of time integration, but where the solution of interest changes on a much longer time scale. Stability conditions of the coupled substructures are analysed by means of the zero‐stability approach, and the accuracy of the novel algorithms in the coupled case is assessed in both the unforced and forced conditions. LSRT algorithms are shown to be more competitive than popular Runge–Kutta methods in terms of stability, accuracy and ease of implementation. Numerical simulations and real‐time substructure tests are used to demonstrate the favourable properties of the proposed algorithms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, a constitutive model of high damping rubber bearings (HDRBs) is developed that allows the accurate representation of the force–displacement relationship including rate‐dependence for shear deformation. The proposed constitutive model consists of two hyperelastic springs and a nonlinear dashpot element and expresses the finite deformation viscoelasticity laws based on the classical Zener model. The Fletcher–Gent effect, manifested as high horizontal stiffness at small strains and caused by the carbon fillers in HDRBs, is accurately expressed through an additional stiffness correction factor α in the novel strain energy function. Several material parameters are used to simulate the responses of high damping rubber at various strain levels, and a nonlinear viscosity coefficient η is introduced to characterize the rate‐dependent property. A parameter identification scheme is applied to the results of the multi‐step relaxation tests and the cyclic shear tests, and a three‐dimensional function of the nonlinear viscosity coefficient η with respect to the strain, and strain rate is thus obtained. Finally, to investigate the accuracy and feasibility of the proposed model for application to the seismic response assessment of bridges equipped with HDRBs, an improved real‐time hybrid simulation (RTHS) test system based on the velocity loading method is developed. A single‐column bridge was used as a test bed and HDRBs was physically tested. Comparing the numerical and RTHS results, advantage of the proposed model in the accuracy of the predicted seismic response over comparable hysteretic models is demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In an attempt to quantify the conductor cable effect on substation electrical equipment, real‐time hybrid simulation (RTHS) is conducted on interconnected equipment using two shaking tables. For this purpose, the existing RTHS system with advanced control capabilities at the Pacific Earthquake Engineering Research Center structural laboratory is enhanced to accommodate the simultaneous use of two shaking tables. An experimental parametric study is conducted to investigate the conductor cable effect using this system with a two‐table RTHS setup. Post insulators of disconnect switches, important components of substations that are usually tested with conventional methods for evaluating their seismic performance, are utilized as experimental substructures for realistic representation of the electrical equipment. Various global and local response parameters, including accelerations, forces, displacements, and strains, are considered to evaluate the effect of the tested conductor cable configuration for a wide range of support structure configurations, which are modeled in the computer as analytical substructures. The experimental parametric study results indicate that the conductor cable has a significant effect on the response of the interconnected equipment over the whole range of investigated support structures and needs to be explicitly considered for seismic testing of electrical equipment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
We present a comparison of methods for the analysis of the numerical substructure in a real‐time hybrid test. A multi‐tasking strategy is described, which satisfies the various control and numerical requirements. Within this strategy a variety of explicit and implicit time‐integration algorithms have been evaluated. Fully implicit schemes can be used in fast hybrid testing via a digital sub‐step feedback technique, but it is shown that this approach requires a large amount of computation at each sub‐step, making real‐time execution difficult for all but the simplest models. In cases where the numerical substructure poses no harsh stability condition, it is shown that the Newmark explicit method offers advantages of speed and accuracy. Where the stability limit of an explicit method cannot be met, one of the several alternatives may be used, such as Chang's modified Newmark scheme or the α‐operator splitting method. Appropriate methods of actuator delay compensation are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
磁流变阻尼器作为一种比较典型的半主动控制元件,具有构造简单、响应速度快、耐久性好、阻尼力大且连续可调等优点。即使地震中能源中断,磁流变阻尼器仍可以作为被动耗能装置继续工作发挥作用,可靠性高。设计合理有效的磁流变阻尼器半主动控制方法,对于整体结构的减震效果尤其重要。提出一种改进的磁流变阻尼器的半主动控制策略-改进的Bang-Bang控制策略,对装有磁流变阻尼器的减震控制3层框架结构进行了一系列的实时混合模拟试验,对多种半主动控制方法下的振动控制效果进行试验分析。试验结果表明:磁流变阻尼器对框架结构的减震效果显著,并验证了提出的磁流变阻尼器半主动控制策略的有效性。  相似文献   

18.
The effectiveness of equivalent force control (EFC) method has been experimentally validated through hybrid tests with simple specimens. In this paper, the EFC method is applied for the MDOF pseudo‐dynamic substructure tests in which a three‐storey frame‐supported reinforced concrete masonry shear wall with full scale is chosen as physical substructure. The effects of equivalent force controller parameters on the response performance are studied. Analytical expressions for the controller parameter ranges are derived to avoid response overshooting or oscillation and are verified by numerical simulation. The controller parameters are determined based on analytical and numerical studies and used in the actual full‐scale pseudo‐dynamic test. The test results show good tracking performance of EFC, which indicates a successful test. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The time delay resulting from the servo hydraulic systems can potentially destabilize the real‐time dynamic hybrid testing (RTDHT) systems. In this paper, the discrete‐time root locus technique is adopted to investigate the delay‐dependent stability performance of MDOF RTDHT systems. Stability analysis of an idealized two‐story shear frame with two DOFs is first performed to illustrate the proposed method. The delay‐dependent stability condition is presented for various structural properties, time delay, and integration time steps. Effects of delay compensation methods on stability are also investigated. Then, the proposed method is applied to analyze the delay‐dependent stability of a single shaking table RTDHT system with an 18‐DOF finite element numerical substructure, and corresponding RTDHTs are carried out to verify the theoretical results. Furthermore, the stability behavior of a finite element RTDHT system with two physical substructures, loaded by twin shaking tables, is theoretically and experimentally investigated. All experimental results convincingly demonstrate that the delay‐dependent stability analysis on the basis of the discrete‐time root locus technique is feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A set of algorithms combined with a substructure technique is proposed for an online hybrid test framework, in which the substructures are encapsulated by a standard interface that implements displacements and forces at the common substructure boundaries. A coordinator equipped with the proposed algorithms is designed to achieve boundary compatibility and equilibrium, thereby endowing the substructures the ability to behave as one piece. A model‐based predictor and corrector, and a noniterative procedure, characterize the set of algorithms. The coordinator solves the dynamics of the entire structure and updates the static boundary state simultaneously by a quasi‐Newton procedure, which gradually formulates the condensed stiffness matrix associated with corresponding degrees of freedom. With the condensed stiffness matrix and dynamic information, a condensed equation of motion is derived and then solved by a typical time integration algorithm. Three strategies for updating the condensed stiffness matrix are incorporated into the proposed algorithms. Each adopts different stiffness matrix during the predicting and correcting stage. These algorithms are validated by two numerical substructure simulations and a hybrid test. The effectiveness and feasibility are fully demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号