首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The topography and geomorphology of active orogens result from the interaction of tectonics and climate. In most orogens, a fluvial channel is most sensitive to the coupling between tectonics, lithology, and climate. Meanwhile, the related signals have been recorded by both the drainage geometry and channel longitudinal profile. Thus, how to extract tectonic information from fluvial channels has been a focused issue in geologic and geomorphologic studies. The well known stream-power river incision model bridges the gap between tectonic uplift, river incision and channel profile change, making it possible to retrieve rock uplift pattern from river profiles. In this model, the river incision rate depends on the rock erodibility, contributing drainage area and river gradient. The steady-state form of the river incision model predicts a power-law scaling between the drainage area and channel gradient. Via a linear regression to the log-transformed slope-area data, the slope and intercept are channel concavity and steepness indices, respectively. The concavity relates to lithology, climatic setting and incision process while the channel steepness can be used to map the spatial pattern of rock uplift. For its simple calculation process, the slope-area analysis has been widely used in the study of tectonic geomorphology during past decades. However, to calculate river slope, the coarse channel elevation data must be smoothed, re-sampled, and differentiated without any reasonable smooth window or rigid mathematical fundamentals. One may lose important information and derive stream-power parameters with high uncertainties. In this paper, we introduce the integral approach, a procedure that has been widely used in the latest four years and demonstrated to be a better method for river profile analysis than the traditional slope-area analysis. Via the integration to the steady-state form of the stream-power river incision equation, the river longitudinal profile can be converted into a straight line of which the independent variable is the integral quantity χ with the unit of distance and the dependent variable is the relative channel elevation. We can calculate the linear correlation coefficient between elevation and χ based on a series of concavity values and find the best linear fit to be the reasonable channel concavity index. The slope of the linear fit to the χ value and elevation is simply related to the ratio of the uplift rate to the erodibility. Without calculating channel slope, the integral approach makes up for the drawback of the slope-area analysis. Meanwhile, via the integral approach, a steady-state river profile can be expressed as a continuous function, which can provide theoretical principle for some geomorphic parameters (e.g., slope-length index, hypsometric integral). In addition, we can determine the drainage network migration direction using this method. Therefore, the integral approach can be used as a better method for tectonogeomorphic research.  相似文献   

2.
The Daqingshan Fault located in the northern margin of the Hetao Basin has experienced intensive activity since late Quaternary, which is of great significance to the molding of the present geomorphology. Since basin geomorphological factors can be used to reflect regional geomorphological type and development characteristics, the use of typical geomorphology characteristics indexes may reveal the main factors that control the formation of topography. In recent years, more successful research experience has been accumulated by using hypsometric integral(HI) values and channel steepness index(ksn)to quantitatively obtain geomorphic parameters to reveal regional tectonic uplift information. The rate of bedrock uplifting can be reflected by channel steepness index, the region with steep gradient has high rate of bedrock uplifting, while the region with slower slope has low rate of bedrock uplifting. The tectonic uplift can shape the geomorphic characteristics by changing the elevation fluctuation of mountains in study area, and then affect the hypsometric integral values distribution trend, thus, the HI value can be used to reflect the intensity of regional tectonic activity, with obvious indicating effect. Knick point can be formed by fault activity, and the information of knick point and its continuous migration to upstream can be recorded along the longitudinal profile of stream. Therefore, it is possible and feasible to obtain the information of tectonic activity from the geomorphic characteristics of Daqinshan area. The research on the quantitative analysis of regional large-scale tectonic activities in the Daqingshan area of the Yellow River in the Hetao Basin is still deficient so far. Taking this area as an example, based on the method of hypsometric integral(HI) and channel steepness index(ksn), we use the DEM data with 30m resolution and GIS spatial analysis technology to extract the networks of drainage system and seven sub-basins. Then, we calculate the hypsometric integral(HI) values of each sub-basin and fit its spatial distribution characteristics. Finally, we obtain the values of channel steepness index and its fitting spatial distribution characteristics based on the improved Chi-plot bedrock analysis method. Combining the extraction results of geomorphic parameters with the characteristics of fault activity, we attempt to explore the characteristics of drainage system development and the response of stream profile and geomorphology to tectonic activities in the Daqingshan section of the Yellow River Basin. The results show that the values of the hypsometric integral in the Daqingshan drainage area are medium, between 0.5~0.6, and the Strahler curve of each tributary is S-shaped, suggesting that the geomorphological development of the Daqingshan area is in its prime, and the tectonic activity and erosion is strong. Continuous low HI value is found in the tectonic subsidence area on the hanging wall of the Daqingshan Fault. The distribution characteristics of the HI value reveal that the Daqingshan Fault controls the geomorphic difference between basin and mountain. Longitudinal profiles of the river reveal the existence of many knick points. The steepness index of river distributes in high value along the trend of mountain which lies in the tectonic uplift area on the footwall of the Daqingshan Fault. It reflects that the bedrock uplift rate of Daqingshan area is faster. The distribution characteristics of the channel steepness index show that the uplift amplitude of Daqingshan area is strong and the bedrock is rapidly uplifted, which is significantly different from the subsidence amplitude in the depression basin at the south margin of the fault, indicating that the main power source controlling the basin mountain differential movement comes from Daqingshan Fault. Based on the comparison and analysis on tectonic, lithology and climate, there is no obvious corresponding relationship between the difference of rock erosion resistance and the change of geomorphic parameters, and the precipitation has little effect on the geomorphic transformation of Daqingshan area, and its contribution to the geomorphic development is limited. Thus, we think the lithology and rainfall conditions have limited impact on the hypsometric integral, longitudinal profiles of the river and channel steepness index. Lithology maybe has some influences on the channel knick points, while tectonic activity of piedmont faults is the main controlling factor that causes the unbalanced characteristics of the longitudinal profile of the channel and plays a crucial role in the development of the channel knick points. So, tectonic activity of the Daqingshan Fault is the main factor controlling the uplift and geomorphic evolution of the Daqingshan area.  相似文献   

3.
The incision rate and steepness of bedrock channels depend on water discharge, uplift rate, substrate lithology, sediment flux, and bedload size. However, the relative role of these factors and the sensitivity of channel steepness to rapid (>1 mm yr−1) uplift rates remain unclear. We conducted field and topographic analyses of fluvial bedrock channels with varying channel bed lithology and sediment source rock along the Coastal Range in eastern Taiwan, where uplift rates vary from 1.8 to 11.8 mm yr−1 and precipitation is relatively consistent (1.5–2.7 m yr−1), to evaluate the controls on bedrock channel steepness. We find that channel steepness is independent of rock uplift rate and annual precipitation but increases monotonically with sediment size and substrate strength. Furthermore, in reaches with uniform substrate lithology (mudstone and flysch), channel steepness systematically varies with sediment source rock but not with channel width. When applied to our data, a mechanistic incision model (saltation-abrasion model) suggests that the steepness of Coastal Range channels is set primarily by coarse-sediment supply. We also observe that larger particles are mainly composed of resistant lithologies derived from volcanic rocks and conglomerates. This result implies that hillslope bedrock properties in the source area exert a dominant control on the steepness of proximal channels through coarse-sediment production in this setting. We propose that channel steepness may be insensitive to uplift rate and flow discharge in fast-uplifting landscapes where incision processes are set by coarse sediment size and supply. Models assuming a proportionality between incision rate and basal shear stress (stream power) may not fully capture controls on fluvial channel profiles in landslide-dominated landscapes. Processes other than channel steepening, such as enhanced bedload impacts and debris-flow scour, may be required to balance rock uplift and incision in these transport-limited systems.  相似文献   

4.
5.
Variation in the erodibility of rock units has long been recognized as an important determinant of landscape evolution but has been little studied in landscape evolution models. We use a modified version of the Channel‐Hillslope Integrated Landscape Development (CHILD) model, which explicitly allows for variations in rock strength, to reveal and explore the remarkably rich, complex behavior induced by rock erodibility variations in even very simple geologic settings with invariant climate and tectonics. We study the importance of relative contrasts in erodibility between just two units, the order of these units (whether hard rocks overlie soft or soft rocks overlie hard) and the orientation of the contact between the two units. We emphasize the spatial and temporal evolution of erosion rates, which have important implications for basin analysis, detrital mineral records, and the interpretation of cosmogenic isotope concentrations in detrital samples. Results of the landscape evolution modeling indicate that the stratigraphic order of units in terms of erodibility, the gross orientation of the contact (i.e. dipping away or toward the outlet of the landscape) and the contact dip angle all have measurable effects on landscape evolution, including significant spatial and temporal variations in erosion rates. Steady‐state denudation conditions are unlikely to develop in landscapes with significant contrasts in rock strength in horizontal to moderately tilted rock layers, at least at the scale of the entire landscape. Additionally, our results demonstrate that there is no general relation between rock erodibility and erosion rates in natural settings. Although rock erodibility directly controls the erosion rate constant in our models, it is not uncommon for higher erosion rates to occur in the harder, less erodible rock. Indeed erosion rates may be either greater or less than the rock uplift rate (invariant in time and space in our models) in both hard and soft rocks, depending on the local geology, topography, and the pattern of landscape evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The Damxung‐Yangbajain rift is one of the most active north–south trending rifts in the south Tibetan Plateau, and it has been playing an important role in accommodating the east–west extension of the Tibetan Plateau. Both stream profiles on the Nyainqentanglha Range adjacent to the northwest part of the Damxung‐Yangbajain rift and tectonic geomorphology in the north of the rift are analyzed to assess the spatial pattern and intensity of rock uplift which is related to neotectonic activity. A total of 85 stream profiles across the Nyainqentanglha Range are analyzed, and 111 knickpoints are interpreted. Most of these stream profiles are characterized by prominent convexities with two or more knickpoints, many of which are formed due to the strong rock uplift evidenced by abnormal concavity and extremely high steepness indices during the Quaternary. Neotectonic activity in this region is well replicated in the stream profile indices and offset landforms. Tectono‐geomorphic analysis shows that the concavity and steepness indices correlate with the fault movements at many places. The Damxung‐Yangbajain rift is characterized by left‐lateral strike‐slip in the north of Damxung and by normal movement in middle and southern parts. The middle and southern parts have been undergoing higher uplift than has the northern area. It is most likely that the strong uplift is related to the heat flow under the crust. Earthquakes occurring in the Damxung‐Yangbajain rift, including a M8 in 1411 and M6.6 in 2008, are thought to be related to heat flow activity. All of the stream profile indices and tectonic geomorphology show that the Damxung‐Yangbajain rift is not in a stable state. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The Huashan piedmont fault, forming a part of the southern margin of the Weihe graben, is one of the important normal faults that control the subsidence of the intracontinental rift. Developing on the footwall of the fault, the Huashan block has experienced rapid cooling during the Cenozoic, especially since the early-middle Miocene. Mountain exhumation causes and transports a great amount of sediments to the adjacent hanging wall, setting a typical case of mountain-basin coupling system. Studies on active tectonics, historical and paleo earthquakes and field investigations reveal that the middle section(Huaxian-Huayin)of the fault is much more active than the west(Lantian-Huaxian)and east(Huayin-Lingbao)sections.
We extracted channel profiles of rivers that originate from the main water divide of the northern flank of the Huashan Mountain. Based on the method of slope-area analysis and the integral approach, we identified knickpoints, calculated channel concavity and steepness indices, and constructed paleo river profiles. Of most rivers, the concavities are within a relatively narrow range of 0.3~0.6, with no obvious correlation with tectonics. However, channel steepness and knickpoint distribution vary spatially. In the east section, rivers are under steady-state with smooth, concave-up channels and lower steepness((104±30)m0.9). In the other two sections, rivers are mainly under transient state with slope-break knickpoints. For the channel segments below knickpoints, steepness indices are much higher in the middle section((230±92)m0.9)than in the west((152±53)m0.9). Thus, the variance of fault activity can be reflected by channel steepness pattern. Above the knickpoints, channel steepness indices are much lower(middle(103±23)m0.9, west(60±14)m0.9). What's more, we found a statistically significant power-law scaling between knickpoint retreat distance and catchment drainage area. Thus, we attributed these knickpoints to be the results of recent rapid uplift of the Huashan block. The relief of paleo channels(middle(1000±153)m, west(751±170)m)accounts for~60%~80% of the relief of modern rivers(middle(1323±249)m, west(1057±231)m), which means that ~20%~40% of modern channel relief was caused by the episode of the rapid uplift. Assuming a balance between the rates of rock uplift and downstream river incision, a power-law function between uplift rates and channel steepness can be derived. According to the fault throw rates of the middle section 1.5~3mm/a(since late Pleistocene), we constrained slope exponent n~0.5 and channel erodibility K~1.5×10-4m0.55/a. Combining the knickpoint age formula, we estimated that the rapid mountain uplift/fault throw began at ~(0.55±0.25)Ma BP. Therefore, the middle of the Huashan piedmont fault is more active than the west and east sections. The fast fault throw of the west and middle sections since the middle Pleistocene has caused rapid mountain uplift and high topographic relief.  相似文献   

9.
This article investigates landscape characteristics and sediment composition in the western Greater Caucasus by using multiple methods at different timescales. Our ultimate goal is to compare short‐term versus long‐term trends in erosional processes and to reconstruct spatio‐temporal changes in sediment fluxes as controlled by partitioning of crustal shortening and rock uplift in the orogenic belt. Areas of active recent uplift are assessed by quantitative geomorphological techniques [digital elevation model (DEM) analysis of stream profiles and their deviation from equilibrium] and compared with regions of rapid exhumation over longer time intervals as previously determined by fission‐track and cosmogenic‐nuclide analyses. Complementary information from petrographic and heavy‐mineral analyses of modern sands and ancient sandstones is used to evaluate erosion integrated throughout the history of the orogen. River catchments displaying the highest relief, as shown by channel‐steepness indices, correspond with the areas of most rapid exhumation as outlined by thermochronological data. The region of high stream gradients is spatially associated with the highest topography around Mount Elbrus, where sedimentary cover strata have long been completely eroded and river sediments display the highest metamorphic indices and generally high heavy‐mineral concentrations. This study reinforces the suggestion that the bedrock–channel network can reveal much of the evolution of tectonically active landscapes, and implies that the controls on channel gradient ultimately dictate the topography and the relief along the Greater Caucasus. Our integrated datasets, obtained during a decade of continuing research, display a general agreement and regularity of erosion patterns through time, and consistently indicate westward decreasing rates of erosional unroofing from the central part of the range to the Black Sea. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Knickpoints in bedrock streams are often interpreted as transient features generated by a change in boundary conditions. It is typically assumed that knickpoints propagate upstream with constant vertical velocities, though this relies on a stream being in erosional steady state (erosion rate equals rock uplift rate) prior to the knickpoint's formation. Recent modeling and field studies suggest that along-stream contrasts in rock erodibility perturb streams from erosional steady state. To evaluate how contrasts in rock erodibility might impact knickpoint interpretations, we test parameter space (rock erodibility, rock contact dip angle, change in rock uplift rate) in a one-dimensional (1D) bedrock stream model that has variable rock erodibility and produces a knickpoint with a sudden change in rock uplift rate. Upstream of a rock contact, the vertical velocity of a knickpoint generated by a change in rock uplift rate is strongly correlated with how the rock contact has previously perturbed erosion rates. These knickpoints increase vertical velocity upon propagating upstream of a hard over soft contact and decrease vertical velocity upon propagating upstream of a soft over hard contact. However, interactions with other transient perturbations produced by rock contacts make for nuances in knickpoint behavior. Rock contacts also influence the geometry of knickpoints, which can become particularly difficult to identify upstream of soft over hard rock contacts. Using our simulations, we demonstrate how a contact's along-stream horizontal migration rate and cross-contact change in rock strength control how much an upstream reach is perturbed from erosional steady state. When simulations include multiple contacts, the knickpoint is particularly prone to colliding with other transient perturbations and can even disappear altogether if rock contact dips are sufficiently shallow. Caution should be taken when analyzing stream profiles in areas with significant changes in rock strength, especially when rock contact dip angles are near the stream's slope.  相似文献   

11.
The most compelling phenomena for transverse drainage in active fold belt are lateral diversion of channels and development of water/wind gaps. This phenomenon is the result of competition between uplift and erosion, which is controlled by fault vertical/lateral propagation and segment linkage, fault geometry, climate condition and lithology. Previous studies found that the higher the uplift rate is, the greater number of wind gaps form, and the variation of the uplift rate is also critical to the sustainability of transverse rivers. Lateral propagation and linkage of several separate folds in fold-and-thrust belts will lead to defeat of streams and diversion into a trunk drainage; if the trunk is still unable to keep pace with uplift, water gap will be abandoned and left as a wind gap. For lateral propagation of an anticline associated with development of tear faults, the locations of wind/water gaps are likely to coincide with the trace of tear fault and it's not quite clear about the relation between tear faulting and stream deflection. Nonzero dip of the underlying detachment induces a lateral surface slope in the direction of fault propagation, which in turn makes rivers deflection more efficient. Climate and rock erodibility control the water/sediment discharge, and further influence river transport/incision capacity. The changing climate and rock erodibility conditions enable river to abandon the current waterway to create a wind gap unless they could down-cut through a growing fold. However, the role of climate cycle in the formation of wind gap is still controversial. In addition, wind gaps are commonly developed along the divides where parts of longitudinal river have been captured by transverse catchments. Generally, the development of transverse drainages and the formation of wind gaps in nature are result from a combination of tectonic and fluvial process. The wind gap pattern and transverse drainage evolution in fold-and-thrust belts contain plenty of information on fault growth, interaction between tectonic uplift and fluvial erosion, and development of sedimentary basin. Such researches have significant implications in geomorphology, seismic hazard assessment and hydrocarbon exploration. However, there are still many knowledge gaps on the study of transverse river evolution in active fold areas. First, adequate chronology and geomorphic/strata mark to quantify fold growth and erosion is commonly not available, which leads to a poorly constrained rate in both river incision and lateral propagation of growing folds. In addition, more geological and geomorphological processes could influence the evolution of transverse drainages. For examples, (1)during the formation of a young range or anticline, the mechanism of fault-related folding may change over time, e.g. from fault-propagation folding to surface breaking; (2)Besides the knickpoint retreat in downstream, efficient lateral planation and downstream sweep erosion are also important in understanding the erosion of folds by rivers flowing through it. These processes make the development of transverse drainage across folds more complex and should be considered in more comprehensive models. There are lots of rivers originating from the Tibetan plateau and cutting through young surrounding mountains. These surrounding mountains, such as Qilian Mountains, Tianshan Mountains and Longmen Mountains, are ideal areas for the study of transverse river evolution and wind gap formation. In the end, combining with the geological and geomorphological features of the Heli Shan-Jintanan Shan, north of Hexi Corridor, we propose that the Heihe River has experienced deflection, beveling and incision since Mid Pleistocene. These processes have led to 1)the formation of a wind gap on the western Heli Shan, 2)a layer of fluvial gravels from the Qilian Shan preserved on the top surface of the Jintanan Shan, and overlying angular unconformity upon older strata, and 3)the incision of the Heihe River to form the Zhengyi Gorge through the linked structure between Heli Shan and Jintanan Shan. Thus, we propose a general model for the development of transverse drainages in the central Hexi Corridor: deflection-beveling-incision.  相似文献   

12.
Mountainous river basins are one of the main sources of sediment. Over long time scales, sediment production is sustained by the persistent dissection of river basins, which is promoted by tectonic activity. The response or adjustment of rivers to forcing factors such as uplift is based on the concept of the graded river and a feedback mechanism between the incision and uplift. Although the development of graded rivers under natural circumstances has been discussed for a long time, knowledge about the transition of river basins under heterogeneous uplift is not enough. To understand the development of a river basin with a non‐uniform uplift rate, two simple cases are examined: landward and seaward tilting uplift, where the uplift rate varies linearly in space. For our study, laboratory experiments were conducted and the results were compared with those of natural river basins; two river basins in Yakushima Island were selected for this purpose. In both the laboratory and Yakushima, the longitudinal profile of the river basin under landward‐tilting uplift has a convex‐up zone and a specific knickpoint is formed at the upstream end of this zone. This knickpoint is inactive with respect to migration and incision owing to the insufficient cumulative uplift to the equilibrium state. It was also observed in both the experimental and natural cases that the profile of the river basin under seaward tilting is unlikely to have such a convex‐up zone in the long term, and will instead have a smooth concave profile. Therefore, the spatiotemporal pattern of dissection differs depending on the type of tilting uplift, which suggests that sediment production also varies in time and space according to the type of uplift.  相似文献   

13.
An integral approach to bedrock river profile analysis   总被引:5,自引:0,他引:5  
Bedrock river profiles are often interpreted with the aid of slope–area analysis, but noisy topographic data make such interpretations challenging. We present an alternative approach based on an integration of the steady‐state form of the stream power equation. The main component of this approach is a transformation of the horizontal coordinate that converts a steady‐state river profile into a straight line with a slope that is simply related to the ratio of the uplift rate to the erodibility. The transformed profiles, called chi plots, have other useful properties, including co‐linearity of steady‐state tributaries with their main stem and the ease of identifying transient erosional signals. We illustrate these applications with analyses of river profiles extracted from digital topographic datasets. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Stream power can be an extremely useful index of fluvial sediment transport, channel pattern, river channel erosion and riparian habitat development. However, most previous studies of downstream changes in stream power have relied on field measurements at selected cross‐sections, which are time consuming, and typically based on limited data, which cannot fully represent important spatial variations in stream power. We present here, therefore, a novel methodology we call CAFES (combined automated flood, elevation and stream power), to quantify downstream change in river flood power, based on integrating in a GIS framework Flood Estimation Handbook systems with the 5 m grid NEXTMap Britain digital elevation model derived from IFSAR (interferometric synthetic aperture radar). This provides a useful modelling platform to quantify at unprecedented resolution longitudinal distributions of flood discharge, elevation, floodplain slope and flood power at reach and basin scales. Values can be resolved to a 50 m grid. CAFES approaches have distinct advantages over current methodologies for reach‐ and basin‐scale stream power assessments and therefore for the interpretation and prediction of fluvial processes. The methodology has significant international applicability for understanding basin‐scale hydraulics, sediment transport, erosion and sedimentation processes and river basin management. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The erosion of a composite river bank critically depends on the erodibility of its fine soils, as the fine soil has higher resistance against erosion. Therefore, for the estimation of the bank erosion in the case of a composite river bank, it is important to determine the critical shear stress and erodibility coefficients of the bank soil and their spatial distribution. In the present study, erodibility parameters of the river bank of Brahmaputra in India have been estimated through 58 in situ submerged jet tests. The significance of spatial and layer‐wise distribution of the erodibility parameters was tested through analysis of variance (ANOVA). Results indicate that the spatial variation of erodibility parameters is highly significant, but layer‐wise variations of the erodibility parameters are not significant. Therefore, the erodibility of the riverbank depends on the particular location, whereas layer‐wise average erodibility parameters can be lumped for the estimation of the bank erosion for the specific site. Using the measured erodibility parameters, yearly river bank erosions at the study locations were computed and found to fall within the reported range of the bank erosion in the Brahmaputra River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Stochastic erosion of composite banks in alluvial river bends   总被引:2,自引:0,他引:2       下载免费PDF全文
The erosion of composite river banks is a complex process involving a number of factors including fluvial erosion, seepage erosion, and cantilever mass failure. To predict the rate of bank erosion with these complexities, a stochastic bank erosion model is suitable to define the probability distribution of the controlling variables. In this study, a bank erosion model in a river bend is developed by coupling several bank erosion processes with an existing hydrodynamic and morphological model. The soil erodibility of cohesive bank layers was measured using a submerged jet test apparatus. Seasonal bank erosion rates for four consecutive years at a bend in the Brahmaputra River, India, were measured by repeated bankline surveys. The ability of the model to predict erosion was evaluated in the river bend that displayed active bank erosion. In this study, different monsoon conditions and the distribution functions of two variables were considered in estimating the stochastic bank erosion rate: the probability of the soil erodibility and stochastic stage hydrographs for the nth return period river stage. Additionally, the influences of the deflection angle of the streamflow, longitudinal slope of river channel, and bed material size on bank erosion rate were also investigated. The obtained stochastic erosion predictions were compared with the observed distribution of the annual‐average bank erosion rate of 45 river bends in the Brahmaputra River. The developed model appropriately predicted the short‐term morphological dynamics of sand‐bed river bends with composite banks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The watersheds along the north coast of California span a wide range of geologic settings, tectonic uplift rates, and historic timber harvest activity. Known trends in how each of these factors influence erosion rates provides an opportunity to examine their relative importance. We analyzed 71 watersheds within nine larger river basins, investigated the factors influencing suspended sediment rating curves (SRCs), investigated how SRCs varied among our study watersheds, and used Random Forest modeling (RFM) to determine which environmental characteristics and land management metrics influence SRC shapes, vertical offsets, and slopes. While SRCs typically take the form of a power function, they also can exhibit threshold or peak relationships. First, we found both power and threshold relationships for the SRCs within our study watersheds. Second, the SRC offsets and slopes systematically varied with regional tectonic uplift. Third, SRC offsets increased in several watersheds following intensive timber harvest events and SRC slopes decreased due to a greater relative increase in suspended sediment concentration at lower flows than higher flows. Our RFM correctly classified 96% of the SRC shapes using two near-channel metrics; near-channel precipitation-sensitive deep-seated landslide susceptibility and near-channel soil erodibility. Our RFM models also showed that timber harvest activity and near-channel local relief can explain 40% of the variability in SRC offsets, whereas tectonic uplift rates, millennial-scale erosion rates, and precipitation patterns explain 40% of the variability in SRC slopes.  相似文献   

19.
The Earth's topography is shaped by surface processes that operate on various scales. In particular, river processes control landscape dynamics over large length scales, whereas hillslope processes control the dynamics over smaller length scales. This scale separation challenges numerical treatments of landscape evolution that use space discretization. Large grid spacing cannot account for the dynamics of water divides that control drainage area competition, and erosion rate and slope distribution. Small grid spacing that properly accounts for divide dynamics is computationally inefficient when studying large domains. Here we propose a new approach for landscape evolution modeling that couples irregular grid‐based numerical solutions for the large‐scale fluvial dynamics and continuum‐based analytical solutions for the small‐scale fluvial and hillslope dynamics. The new approach is implemented in the landscape evolution model DAC (divide and capture). The geometrical and topological characteristics of DAC's landscapes show compatibility with those of natural landscapes. A comparative study shows that, even with large grid spacing, DAC predictions fit well an analytical solution for divide migration in the presence of horizontal advection of topography. In addition, DAC is used to study some outstanding problems in landscape evolution. (i) The time to steady‐state is investigated and simulations show that steady‐state requires much more time to achieve than predicted by fixed area calculations, due to divides migration and persistent reorganization of low‐order streams. (ii) Large‐scale stream captures in a strike‐slip environment are studied and show a distinct pattern of erosion rates that can be used to identify recent capture events. (iii) Three tectono‐climatic mechanisms that can lead to asymmetric mountains are studied. Each of the mechanisms produces a distinct morphology and erosion rate distribution. Application to the Southern Alps of New Zealand suggests that tectonic advection, precipitation gradients and non‐uniform tectonic uplift act together to shape the first‐order topography of this mountain range. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The Huya Fault, located in the steep topographic boundary of the Minshan Mountains in the eastern margin of the Tibetan plateau, has documented many major earthquakes such as the 1630(M=6 3/4), 1973 Huanglong(MS=6.5) and the 1976 Songpan-Pingwu earthquake swarm(MS=7.2, 6.7, 7.2). While its activity remains unclear because of lacking Quaternary sediments. In the past few decades, there have been significant advances in understanding the relationship between bedrock channel landscapes and active tectonics, indicating that the bedrock fluvial features can well record the tectonic activity. Many studies reveal that tectonism is the primary factor of landscape evolution in tectonically active regions, and the erosional landscapes can be used to reveal tectonic signals on timescales of 103~106 years. The Huya Fault crosses the Fujiang drainage basin, making it suitable for the study of bedrock rivers and tectonic uplift in the eastern margin of Minshan. In this study, we calculate the geomorphologic indeices(hillslope, local relief, normalized steepness indices and hypsometric integral) on the basis of the digital elevation model(DEM) SRTM-1. For better understanding the tectonic activity along this fault, we derive some small catchments on the two sides of the Huya fault to analyze the differences of average steepness indices and hypsometric integral. Combining with field observations, lithology, precipitation and modern erosion rates, this study suggests that tectonic activity is the controlling factor of geomorphology in the eastern margin of the Minshan Mountains. We use focal mechanism solutions, GPS data and geomorphic evidence to explore the relationship between the geomorphologic indices of the Fujiang drainage and activity characteristics of the Huya fault. Our results suggest that:(1) The Fujiang drainage basin is in a steady state. The characteristics of the knickpoints indicate that they are mainly controlled by the locally resistant substrate. (2) The suggested value of the geomorphologic index on the west side of the Huya fault is generally larger than on the east side, showing differential tectonic uplift rates across the fault. (3) The difference of the geomorphologic index of the small catchments on both sides of the Huya fault is gradually increasing from north to south along this fault, in accordance with that the north and south segments of the Huya fault are dominated by strike-and reverse-slip, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号