首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
海岸带地质灾害评估理论与方法研究进展   总被引:4,自引:0,他引:4  
文章在总结前人关于地质灾害分类的基础上,重新探讨了海岸带地质灾害的涵义;论述与地质灾害评估相关的几个概念,并从性质分类上总结了海岸带地质灾害脆弱性、危险性、易损性、风险性评估的理论和方法;针对目前海岸带地质灾害评估存在的问题,认为未来海岸带地质灾害评估研究需要从研究海岸带地质灾害特殊性入手,采用多学科交叉的方法综合研究,以实现海岸带地质灾害评估定量化和管理空间化。  相似文献   

2.
吴富强  徐小连 《江苏地质》2019,43(1):129-135
海岸带对于人类社会和经济发展至关重要,同时也是对全球变化反映最敏感的地带,为了提高对国民经济建设的服务质量,开展海岸带1∶5万地质调查与研究越来越重要。通过收集大量有关海岸带方面的资料以及珠海海岸带1∶5万填图试点工作,了解海岸带地质调查与研究的国内外现状,论述海岸带1∶5万地质调查研究的重点内容及技术方法,探讨存在的主要问题并提出了相关建议  相似文献   

3.
基于生态工程的海岸带全球变化适应性防护策略   总被引:2,自引:0,他引:2  
在全球变化导致的海平面上升和灾害性气候等压力下,我国海岸带风暴潮、海岸侵蚀、地面沉降等灾害发生频率和强度正在增加,对海岸防护体系的需求日益提高。传统海岸防护工程维护成本高,更新困难,而且可能造成地面沉降、水质恶化、生态退化、渔业资源衰退等后果。基于生态工程的海岸防护提供了抵御海岸带灾害的新理念。修复和重建沙滩、红树林、沼泽湿地、珊瑚礁等海岸带生态系统,可以起到消浪、蓄积泥沙、抬升地面的作用,有效应对全球变化引发的灾害风险,形成更可持续的海岸防护体系。通过分析不同海岸防护技术的优势和限制,认为以生态工程为核心理念构建和管理我国海岸防护体系,才能起到保障社会经济发展和维持生态健康的最佳效果。  相似文献   

4.
吴越  刘东升  陆新  宋强辉 《岩土力学》2011,32(8):2487-2492
承灾体易损性定量评估是制约滑坡灾害风险评估研究的瓶颈问题。为此,以滑坡体冲击冲量为致灾强度指标、建筑物整体抗剪力为抗灾性能指标,推导出典型承灾体易损性定量评估模型。在此基础上,考虑滑体运动特征参数随机性对易损性的影响,提出风险曲线和最大风险度指标的概念,以反映滑坡灾害成灾全过程中不确定性对灾害后果的影响。并采用该模型分析了坡体几何特征参数、受灾体空间位置以及受灾体抗灾性能对易损性的影响规律。将风险度指标应用于算例分析,并与以往方法进行了比较,分析发现,建立的易损性定量评估模型可以反映二维简化情况下受灾体毁损程度与各种影响因素之间关系的基本规律,为易损性定量评估提供了一种途径。  相似文献   

5.
地质灾害土地资源易损性评价定量探讨   总被引:3,自引:0,他引:3       下载免费PDF全文
地质灾害风险评估中对土地资源易损性考虑较少,作为自然资源的主要承灾体,土地资源应和人口和物质财富一样进行定量化研究。在地质灾害评价理论和土地资源价值理论的基础上,探讨了地质灾害风险评估中的土地资源易损性评估的技术方法。易损性的影响因素是灾害强度和土地资源承灾能力,承灾能力的影响因素是土地利用方式、土壤类型等,基于此,建立了数学模型进行易损性计算,核算了土地资源的经济价值、社会价值、生态价值,进行了综合易损性计算和土地资源易损性区划,并在西乡县进行了实例验证。  相似文献   

6.
海岸带陆海相互作用(LOICZ)研究及我们的策略   总被引:19,自引:3,他引:19  
介绍了全球变化研究中关于“海岸带”的定义,海岸带在地球系统研究中的重要地位及其生态系统的脆弱性。我国海岸带地跨三大气候带,海岸类型多种多样,不但有黄河、长江等大河入海,每年有巨大的向海物质通量(包括从大气中的粉尘输入),有宽阔的陆架,有陆架区和近洋之间强烈的物质和能量交换,而且沿海人口密集,大河流域经济活动频繁,人类活动和自然因素冲突集中。近年来海岸带环境和生态系统已经发生了巨大变化。今后,在全球变化条件下为使我国的海岸带环境和生态系统进入良性循环和制定科学的长期管理政策,亟待通过陆海相互作用研究提高对其未来变化的预测能力。文中根据国际LOICZ运行计划和我国的特点,提出开展我国LOICZ研究的策略和主要科学问题。  相似文献   

7.
海岸带是陆地、海洋和大气相互作用最强烈的地带,也是受全球气候、海平面变化以及人类活动影响最大的地区。海岸带动力过程具有明显的海洋-陆架-海湾-海岸多尺度多物理场特点,动力地貌过程和响应机制极具特色。台风等极端气象事件的频繁发生,工程措施等强人类活动的影响,导致海岸带动力地貌演变规律呈现出更大的不确定性。从高强度扰动下海岸动力条件、极端条件影响下海岸动力地貌特征和强人类活动影响下海岸动力地貌特征等方面,综述了已有研究工作进展。全球气候变化和人类活动共同作用的海岸带多尺度动力过程和海岸地貌响应内在机制极其复杂,在未来海岸动力地貌特征的研究中,需要进一步从大气、海浪、海洋和泥沙等多物理场,海洋、陆架、海湾和海岸等多尺度,动力条件、泥沙输移和地貌塑造等多过程的角度,探究高强度扰动下海岸带动力过程、响应机制和演变规律。  相似文献   

8.
文中地质灾害包括崩塌、滑坡、泥石流、地面塌陷四类突发性地质灾害。采用地质灾害危险性与承灾体易损性分项测算,定性综合评估的方式实现我国县域单元地质灾害风险评估。将承灾体易损性分为人口安全易损性与资产易损性,用因灾死亡人口比与因灾直接经济损失比表征。基于以历史数据分析指导未来预测的思想,以国土资源部2001—2015年地质灾害灾情数据为样本,提出了人口安全易损性与资产易损性的分级标准。对我国2869个县域单元进行地质灾害风险评价,结果表明共有216个地质灾害高风险单元、643个中风险单元和2010个低风险单元。地质灾害高风险区集中分布于乌蒙山区、四川盆地周边山区以及云南西部和西藏东南部。  相似文献   

9.
目前单体滑坡人口易损性评价仍有较多问题存在,制约了其定量化程度.为此,文章从滑坡导致人口易损性产生的原因出发,提出了一种单体滑坡人口易损性评价方法,该方法认为人口易损性的大小与滑坡滑速大小直接相关,滑速越大,人口易损性越大,反之越小.通过研究,验证了该方法能正确反映滑坡滑速越大、人口易损性越大这一关系,从而为单体滑坡人口易损性定量评价提供了新的途径.  相似文献   

10.
海岸带侵蚀灾害研究进展及思考   总被引:1,自引:0,他引:1  
在当今全球海平面上升的背景下,海岸侵蚀灾害已严重威胁着海岸带生存和生活环境,逐渐成为各相关领域的一个热点研究课题。因此,在总结中国典型海岸段侵蚀灾害的基础上,深刻探讨国内外海岸带侵蚀研究现状,并就此提出存在的两个关键性问题。最后,指出今后应重点加强以下5个方面的研究:(1)海岸侵蚀与地质环境条件的相关关系;(2)海岸侵蚀分区特征与发育分布规律;(3)侵蚀海岸的变形破坏模式;(4)岩土体在各种侵蚀因子作用下力学特性变化;(5)海岸稳定性的评价机制。  相似文献   

11.
Coastal hazard mapping in the Cuddalore region, South India   总被引:1,自引:0,他引:1  
It is estimated that nearly one-third of India’s population lives on the coast and is dependent on its resources. Shoreline erosion, storm surges and extreme events have resulted in severe loss of human life, damage to ecosystems and to property along the coast of India. Studies carried out in the Cuddalore region of South India reveal that this low-lying coastal zone, which suffered significant erosion during the last century, has been severely affected by the tsunami of 2004, storm floods and cyclones. In response to these impacts, a variety of coastal defense measures and adaptation strategies have been implemented in the region, although with only limited success. In order to inform future coastal planning in this region, the work reported here identifies a composite hazard line, seaward of which coastal flooding events will have a return interval of less than 1 in 100 years. The area landward of the coastal hazard line will be unaffected by 100 years of coastal erosion at present day rates. The study directly supports the Integrated Coastal Zone Management (ICZM) Plan of the Tamil Nadu State through the identification and assessment of coastal hazards and the overall vulnerability to coastal flooding and erosion. The key results from this pilot study will be used directly by the State of Tamil Nadu in the protection of the coastal livelihoods, better conservation measures and sustainable development along the coast. This study is a step toward mapping the hazard line for the entire coast of India that helps protect human lives and property.  相似文献   

12.
Vizianagaram–Srikakulam coastal shoreline consisting of beaches, mangrove swamps, tidal channel and mudflats is one of the vulnerable coasts in Andhra Pradesh, India. Five site-specific parameters, namely rate of geomorphology, coastal elevation, coastal slope, shoreline change and mean significant wave height, were chosen for constructing coastal vulnerability index and assessing coastal landscape vulnerability. The findings revealed a shift of 2.5 km in shoreline towards the land surface because of constant erosion and that of 1.82 km towards the sea due to accretion during 1997–2017. The rate of high erosion was found in zones IV and V, and high accretion was found in zones II and III. Coastal vulnerability index analysis revealed constant erosion along shoreline and sea level rise in the study area. Most of the coast in zone V has recorded very high vulnerability due to erosion, high slope, significant wave height and sea level rise. Erosion and accretion, significant wave height, sea level rise and slope are attributed to high vulnerability in zones III and IV. Zone II recorded moderate vulnerability. Relatively lower slope, mean sea wave height and sea level rise have made this zone moderately vulnerable. Very low vulnerability was found in zone I, and low vulnerability was recorded in zone II. Accretion, low slope and low sea level rise were found to be causative factors of lower vulnerability. Thus, zones III, IV and V should be accorded higher priorities for coastal management. The findings can be helpful in coastal land planning and management and preparing emergency plans of the coastal ecosystems.  相似文献   

13.
The 4th IPCC report highlights the increased vulnerability of the coastal areas from floods due to sea-level rise (SLR). The existing coastal flood control structures in Bangladesh are not adequate to adapt these changes and new measures are urgently necessary. It is important to determine the impacts of SLR on flooding to analyse the performance of the existing structures and corresponding impact to plan for suitable adaptation and mitigation measures to reduce the impacts of floods on coastal zone. The study aims to develop a comprehensive understanding of the possible effects of SLR on floods in the coastal zone of Bangladesh. A hydrodynamic model, which is a combination of surface and river parts, was utilized for flood simulation. The tool was applied under a range of future scenarios, and results indicate both spatial variability of risk and changes in flood characteristics between now and under SLR. Estimated impact on population, infrastructure and transportation is also exposed. These types of impact estimation would be of value to flood plain management authorities to minimize the socio-economic impact.  相似文献   

14.
A shallow unconfined low-lying coastal aquifer in southern Finland surrounded by the Baltic Sea is vulnerable to changes in groundwater recharge, sea-level rise and human activities. Assessment of the intrinsic vulnerability of groundwater under climate scenarios was performed for the aquifer area by utilising the results of a published study on the impacts of climate change on groundwater recharge and sea-level rise on groundwater–seawater interaction. Three intrinsic vulnerability mapping methods, the aquifer vulnerability index (AVI), a modified SINTACS and GALDIT, were applied and compared. According to the results, the degree of groundwater vulnerability is greatly impacted by seasonal variations in groundwater recharge during the year, and also varies depending on the climate-change variability in the long term. The groundwater is potentially highly vulnerable to contamination from sources on the ground surface during high groundwater recharge rates after snowmelt, while a high vulnerability to seawater intrusion could exist when there is a low groundwater recharge rate in dry season. The AVI results suggest that a change in the sea level will have an insignificant impact on groundwater vulnerability compared with the results from the modified SINTACS and GALDIT. The modified SINTACS method could be used as a guideline for the groundwater vulnerability assessment of glacial and deglacial deposits in inland aquifers, and in combination with GALDIT, it could provide a useful tool for assessing groundwater vulnerability to both contamination from sources on the ground surface and to seawater intrusion for shallow unconfined low-lying coastal aquifers under future climate-change conditions.  相似文献   

15.
The current researches on risk assessment of geological disasters mainly focus on unexpected disasters such as collapses, landslides and mud-rock flows etc. As the convergence zone of land and sea, coastal zone is the most active and complex area of interactions of lithosphere, hydrosphere, atmosphere, biosphere and anthroposphere. The ecological environment of coastal zone is very fragile, so further systematical research on coastal geological hazard assessment and prevention is in urgent need. The author begins with the definition and research contents and selects three typical coastal geological disasters, namely, the seawater intrusion, coastline change and sea-level rise as the objects of study. The systematic analysis and study on assessment system and methods are conducted, hazard assessment factors are selected, and a completely set of coastal disaster assessment system is established based on the technique of GIS. We took Bao’an District of Shenzhen City as an example and carried out a case study.  相似文献   

16.
Among the coastal districts of mega city Istanbul, Bakirkoy is one of the most critical one with the importance of air and marine transportation and presence of many other coastal facilities and structures that are prone to suffer from marine hazards. In the history, the Sea of Marmara has experienced numerous earthquake and landslide events and associated tsunamis. Therefore, tsunami risk assessment is essential for all coastal districts of Istanbul, including Bakirkoy district. In this study, a further developed methodology for tsunami human vulnerability and risk assessment Metropolitan Tsunami Human Vulnerability Assessment (MeTHuVA) is applied for Bakirkoy district of Istanbul, considering earthquake generated tsunamis. High-resolution tsunami hazard analysis is performed with the integration of coastal inundation computation with tsunami numerical tool NAMI DANCE and tsunami human vulnerability assessment with GIS-based multi-criteria decision analysis methods (MCDA). Using analytical hierarchy process method of MCDA, a hierarchical structure is established, composed of two main elements of tsunami human vulnerability: Vulnerability at Location and Evacuation Resilience. Tsunami risk assessment for Bakirkoy district is calculated by integrating result of hazard and vulnerability assessments with a risk relation that includes a parameter (n), which represents the preparedness and awareness level of the community. Tsunami simulations revealed that the maximum inundation distance is over 350 m on land and water penetrates almost 1700 m along Ayamama stream. Inundation is observed in eleven neighborhoods of Bakirkoy district. In the inundation zone, maximum flow depth is found to be over 5.7 m. The inundated area forms 4.2% of whole Bakirkoy district, and 62 buildings are located in the inundation zone. Hazard, vulnerability and risk assessment results for different neighborhoods of Bakirkoy district are presented and discussed.  相似文献   

17.
The study of the economic impact of climate change has received extensive attention from governments and scholars around the world. This paper based on 14 796 literatures that related to climate change and economic from the core database of Web of Science. Integrating the method of co-citation network and burst keywords co-occurrence network to analyze the temporal and spatial changes of research hotspots on climate change and economic impact. The results show that the global literature's number keep a exponential growth trend, rapidly after 2007. Before 2007, the research hotspots primarily centered on the climate change attribution analysis (increased CO2 emissions from fossil fuels, land use changes, etc.), the impact on natural ecosystems (agricultural production, food security, Arctic ice caps, coastal zones, etc.) and socio-economic System (human health, energy, industry, etc.), and the assessment of economic impac and then focused on the future scenarios of climate change and CO2 abatement and how to adapt and mitigate the climate change. After 2007, with the introduction of IPCC AR4 and Stern report, further strengthened the research on cost-effective assessment of climate change impact, vulnerability, bioenergy and so on. The research hotspots focus on economics of climate change and trade. In space, the literatures of research hotspots were mainly come from the United States, Canada, Western European countries (UK, France, Germany, Italy, Netherlands), Australia and China.  相似文献   

18.
全球气候变化下水资源脆弱性及其评估方法   总被引:43,自引:0,他引:43  
气候变化对水资源的影响主要表现在两个方面:①对水资源供给能力的影响;②对水资源需求性的影响。气候变化下水资源脆弱性评估是水资源系统的综合评估,主要包括水资源供给与需求平衡的评估。我国水资源深受气候影响,表现在地区分布不均、洪涝灾害严重、供需矛盾突出等方面;此外,自气候变化引起关注以来,我国有关水资源脆弱性评估的研究甚少。对水资源脆弱性评估方法进行探讨,旨在为进一步探讨气候变化下我国水资源的脆弱性提供依据。  相似文献   

19.
The study area is 56-km coastal zone of Chennai district of the Tamil Nadu state, southeast coast of India. The coastline, which includes tourist resorts, ports, hotels, fishing villages, and towns, has experienced threats from many disasters such as storms, cyclones, floods, tsunami, and erosion. This was one of the worst affected area during 2004 Indian Ocean tsunami and during 2008 Nisha cyclone. The present study aims to develop a Coastal Vulnerability Index for the Chennai coast using eight relative risk variables to know the high and low vulnerable areas, areas of inundation due to future SLR, and land loss due to coastal erosion. Both conventional and remotely sensed data were used and analyzed with the aid of the remote sensing and geographic information system tools. Zones of vulnerability to coastal natural hazards of different magnitude (high, medium, and low) are identified and shown on a map. Coastal regional elevation, near-shore bathymetry, and socio-economic conditions have been considered as additional important variables. This study revealed that 11.01?km of the coastline has low vulnerability, 16.66?km has medium vulnerability, and 27.79?km is highly vulnerable in the study area, showing the majority of coastline is prone to erosion. The map prepared for the Chennai coast can be used by the state and district administration involved in the disaster mitigation and management plan and also as a tool in planning a new facility and for insurance purpose.  相似文献   

20.
Shennan  Ian  Tooley  Michael  Green  Frances  Innes  Jim  Kennington  Kevin  Lloyd  Jeremy  Rutherford  Mairead 《Geologie en Mijnbouw》1998,77(3-4):247-262
Analyses of geomorphologically contrasting sites in Morar, NW Scotland, describe the forcing mechanisms of coastal change. Isolation basins (i.e. basins behind rock sills and now isolated from the sea following isostatic uplift) accumulated continuous marine and freshwater sediments from c.12 to 2 ka BP. Raised dune, marsh and wetland sites register breaching, migration and stability of dunes from c. 9 to 2 ka BP. High-resolution methods designed to address issues of macroscale and microscale sea-level changes and patterns of storminess include 1-mm sampling for pollen, dinocyst and diatom analyses, infra-red photography, X-ray photography and thin-section analysis. The data enhance the record of relative sea-level change for the area. Major phases of landward migration of the coast occurred during the period of low sea-level rise in the mid-Holocene as the rate of rise decreased from c. 3 to < 1 mm/year. Relative sea-level change controls the broad pattern of coastal evolution at each site; local site-specific factors contribute to short-term process change. There is no record of extreme events such as tsunami. Within a system of dynamic metastable equilibrium, the Holocene records show that site-specific factors determine the exact timing of system breakdown, e.g. dune breaching, superimposed on regional sea-level rise. The global average sea-level rise of 3 to 6 mm/yr by AD 2050 predicted by IPCC would only partly be offset in the Morar area by isostatic uplift of about 1 mm/yr. A change from relative sea-level fall to sea-level rise, in areas where the regional rate of uplift no longer offsets global processes, is a critical factor in the management of coastal resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号