首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Based on total ozone data from the World Ozone Data Center and stratospheric geopotential height data from the Meteorological Institute of Berlin Free University for the months of January through March for the time period of 1958–1996, the influence of the 11-year solar cycle and the equatorial quasi-biennial oscillation (QBO) on total ozone and the stratospheric circulation at 30 hPa over Northern Europe is investigated. The analysis is performed for different levels of solar activity. The relationship of the equatorial QBO with ozone and the stratospheric circulation over the study region exhibits unique features attributed to strong opposite connections between the equatorial zonal wind and ozone/stratospheric dynamics during periods of solar minimum and maximum. Using the Solar/QBO effect, a statistical extraction of the interannual variations of total ozone and stratospheric circulation over Northern Europe has been attempted. The variations extracted and observed for late winter show very good correspondence. The solar/QBO effect in total ozone and stratospheric dynamics over Northern Europe appears to be related to planetary wave activity.  相似文献   

2.
This paper contains correlations between the NCEP/NCAR global stratospheric data below 10 hPa and the 11-year solar cycle. In the north summer the correlations between the stratospheric geopotential heights and the 11-year solar cycle are strong and positive on the Northern Hemisphere and as far south as 30°S, whereas they are weak in the north winter all over the globe. If the global stratospheric heights and temperatures in the north winter are stratified according to the phase of the QBO in the lower stratosphere, their correlations with the solar cycle are large and positive in the Arctic in the west years of the QBO but insignificantly small over the rest of the earth, as far as the South Pole. In the east years, however, the arctic correlations with the solar cycle are negative, but to the south they are positive and strong in the tropical and temperate regions of both hemispheres, similar to the correlations with the full series of stratospheric data in the other seasons. The influence of the solar cycle in the Arctic is stronger in the latter half of the winter. The global difference, in the northern winter, in the sign and strength of the correlations between the stratospheric heights and temperatures and the solar cycle in east and west years of the QBO can be ascribed to the fact that the dominant stratospheric teleconnection and the solar influence work in the same direction in the east years, but oppose each other in the west years.  相似文献   

3.
冬季太阳11年周期活动对大气环流的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘毅  陆春晖 《地球物理学报》2010,53(6):1269-1277
利用气象场的再分析资料和太阳辐射活动资料,对太阳11年周期活动影响北半球冬季(11月~3月)大气环流的过程进行了统计分析和动力学诊断.根据赤道平流层纬向风准两年振荡(QBO)的东、西风状态对太阳活动效应进行了分类讨论,结果表明:东风态QBO时,太阳活动效应主要集中在赤道平流层中、高层和南半球平流层,强太阳活动时增强的紫外辐射加热了赤道地区的臭氧层,造成平流层低纬明显增温,同时加强了南半球的Brewer-Dobson(B-D)环流,引起南极高纬平流层温度增加;而北半球中高纬的环流主要受行星波的影响,太阳活动影响很小.西风态QBO时,太阳活动效应在北半球更为重要,初冬时强太阳活动除了加热赤道地区臭氧层外,还抑制了北半球的B-D环流,造成赤道平流层温度增加和纬向风梯度在垂直方向的变化,从而改变了对流层两支行星波波导的强度;冬末时在太阳活动调制下,行星波向极波导增强,B-D环流逐渐恢复,造成北半球极地平流层明显增温,同时伴随着赤道区域温度的下降.  相似文献   

4.
The interaction between the factors of the quasi-biennial oscillation (QBO) and the 11-year solar cycle is considered as an separate factor influencing the interannual January–March variations of total ozone over Northeastern Europe. Linear correlation analysis and the running correlation method are used to examine possible connections between ozone and solar activity at simultaneous moment the QBO phase. Statistically significant correlations between the variations of total ozone in February and, partially, in March, and the sunspot numbers during the different phases of QBO are found. The running correlation method between the ozone and the equatorial zonal wind demonstrates a clear modulation of 11-y solar signal for February and March. Modulation is clearer if the QBO phases are defined at the level of 50 hPa rather than at 30 hPa. The same statistical analyses are conducted also for possible connections between the index of stratospheric circulation C1 and sunspot numbers considering the QBO phase. Statistically significant connections are found for February. The running correlations between the index C1 and the equatorial zonal wind show the clear modulation of 11-y solar signal for February and March. Based on the obtained correlations between the interannual variations of ozone and index C1, it may be concluded that a connection between solar cycle – QBO – ozone occurs through the dynamics of stratospheric circulation.  相似文献   

5.
We study temporal changes of the rigidity (R) spectrum of the harmonics of the 27-day variation of the galactic cosmic ray (GCR) intensity using neutron monitors (NM) data for the period 1965–2002. We show that the rigidity spectrum of the third harmonic (9 days) of the 27-day variation of the GCR intensity changes in a similar way as the spectra of the first and second harmonics, being hard in the maximum epochs and soft in the minimum epochs of solar activity. We ascribe this finding to the alternation of the sizes of the modulation regions of the 27-day variation of the GCR intensity in different epochs of solar activity. The average size of the vicinity of the corotating interaction regions, causing the 27-day variation of the GCR intensity, is less in the minimum epochs than in the maximum epochs of solar activity. A vicinity of the corotating interaction regions of larger size involves in modulation higher rigidity particles of GCR than the vicinity of smaller size; thus, this statement can be considered as one of the reasons leading to the hardening of the rigidity spectrum of the harmonics of the 27-day variation of the GCR intensity in maximum epochs compared with minimum epochs of solar activity.We also show that the temporal changes of the power rigidity spectrum of the third harmonic of the 27-day variation of the GCR intensity are negatively correlated with the rigidity spectrum of the 11-year variation of the galactic cosmic ray intensity.We found a recurrence in the temporal changes of the amplitudes of the first harmonic of the 27-day variation of the GCR intensity and in some parameters of solar activity and solar wind.  相似文献   

6.
The effect of the 11-year solar cycle on the response of planetary wavenumbers 1 and 2 at 10 and 30 hPa in winter to solar activity oscillations on the time scale of the Sun's rotation (27.2 day) is discussed in terms of statistical spectral analysis. The three oscillations studied are the 27.2 d (period of the Sun's rotation), 25.3 d (periodicity caused by modulation of the 27.2 d stratospheric response by annual atmospheric variation), and 54.4 d (doubled period of the solar rotation). A significant effect of the 11-year solar cycle is found for the 54.4 d periodicity in planetary wavenumber 1, and for the 27.2 and 25.3 d periodicities in planetary wavenumber 2. The effect of the 11-year solar cycle is expressed in the evident differences between the amplitudes of responses of planetary waves at maximum and minimum of the solar cycle: the amplitudes are much larger at high than at low solar activity. The 11-year modulation of planetary wave activity is most pronounced at mid-latitudes, mainly at 40–60°N, where the observed variability of planetary waves is large. The results obtained are in good agreement with results of the recent modeling study by Shindell et al. (Science 284 (1999) 305).  相似文献   

7.
Two different equatorial quasi-biennial oscillation (QBO) indices, two reanalyses and radiosonde observations are used to analyze the Arctic stratospheric temperature and height. This analysis was used to assess the uncertainties in the connection of solar forcing, QBO and the Arctic variability. The results show that (1) the frequency of the westerly/easterly phases of the QBO over the stratospheric equator has a significant multiple peak seasonal variation. The primary seasonal peaks occur in February, March and April for the westerly phase of the QBO and the easterly phase peaks in June, July and August. (2) The correlation of stratospheric Arctic temperature and height with the solar radio flux shows statistical significance in February or July/August even if there is no stratified phase of QBO (easterly and westerly phases) involved. However, when the correlation was computed according to the stratified phase of QBO, the solar signals in both temperature and height fields are remarkably amplified in February and November under the westerly phase, but the signal in the height field is most significant only in August under the easterly phase. (3) The impact of the QBO and solar forcing on the stratospheric temperature and heights in the Arctic varies depending on the season. The impacts are also sensitive to the specific height of the QBO-defined level that is used, the specific period of the analysis and the dataset used.  相似文献   

8.
Solar radiation (both total and in various wavelengths) varies at different time scales—from seconds to decades or centuries—as a consequence of solar activity. The energy received from the Sun is one of the natural driving forces of the Earth's atmosphere and since this energy is not constant, it has been argued that there must be some non-zero climate response to it. This response must be fully specified in order to improve our understanding of the climate system and the impact of anthropogenic activities on it. However, despite all the efforts, if and how subtle variations of solar radiation affect climate and weather still remains an unsolved puzzle. One key element that is very often taken as evidence of a response, is the similarity of periodicities between several solar activity indices and different meteorological parameters. The literature contains a long history of positive or negative correlations between weather and climate parameters like temperature, rainfall, droughts, etc. and solar activity cycles like the 27-day cycle, the prominent 11-year sunspot cycle, the 22-year Hale cycle and the Gleissberg cycle of 80–90 years. A review of these different cycles is provided as well as some of the correlative analyses between them and several stratospheric parameters (like stratospheric geopotential heights, temperature and ozone concentration) and tropospheric parameters (like temperature, rainfall, water level in lakes and river flooding, clouds) that point to a relationship of some kind. However, the suspicion on these relationships will remain as long as an indisputable physical mechanism, which might act to produce these correlations, is not available.  相似文献   

9.
Spectral analysis of Tirunelveli (8.7°N, 77.8°E) MF radar winds for the year 2007 indicate the presence of long-period Kelvin waves with periods ~23 and ~16 days in the low-latitude mesosphere during Indian summer monsoon months. The dominant presence of these slow-phase speed waves at mesospheric altitudes motivated us to investigate their origin and vertical propagation characteristics. Space-time Fourier analysis of NCEP winds and OLR show the presence of these periodicities with zonal wavenumber 1 indicating that tropical convection is the potential source for these waves and westward phase of stratospheric QBO winds might have favoured these waves to reach the mesosphere.  相似文献   

10.
In this paper, we review the variation of the 11-year solar cycle since the 15th century revealed by the measurement of radiocarbon content in single-year tree-rings of Japanese cedar trees. Measurements of radiocarbon content in absolutely dated tree-rings provide a calibration curve for accurate dating of archaeological matters, but at the same time, enable us to examine the variations of solar magnetic activity in the pre-historical period. The Sun holds several long-term quasi-cyclic variations in addition to the fundamental 11-year sunspot activity cycle and the 22-year polarity reversal cycle, and it is speculated that the property of the 11-year and the 22-year solar cycle varies in association with such long-term quasi-cycles. It is essential to reveal the details of solar variations around the transition time of solar dynamo for illuminating the mechanisms of the long-term solar variations. We therefore have investigated the property of the 11-year and 22-year cycles around the two grand solar minima; the Maunder Minimum (1645–1715 AD) and the Spoerer Minimum (1415–1534 AD), the periods of prolonged sunspot minima. As a result, slight stretching of the “11-year” and the “22-year” solar cycles was found during these two grand solar activity minima; continuously during the Maunder Minimum and only intermittently during the Spoerer Minimum. On the contrary, normal or slightly shortened 11-year cycles were detected during the interval period of these two minima. It suggests the inverse correlation between the solar cycle length and solar magnetic activity level, and also the change of meridional flow during the grand solar activity minima. Further measurements for the beginning of the grand solar minima will provide a clue to the occurrence of such prolonged sunspot disappearance. We also discuss the effect of solar variations to radiocarbon dating.  相似文献   

11.
The effect of the 11-year solar cycle on the response of the stratospheric geopotential height and temperature fields at 10 and 30 hPa in winter to solar activity oscillations with periods related to the period of the Sun’s rotation (27.2 days) is discussed, applying methods of statistical spectral analysis to daily data for the period from 1965 to 1996. Atmospheric responses for three periodicities — 27.2 days (period of the Sun’s rotation), 25.3 days (periodicity caused by the modulation of the 27.2 days oscillation by annual atmospheric variation), and 54.4 days (doubled period of the solar rotation) — are studied. A significant effect of the 11-year solar cycle on the atmospheric response to the 27.2 days solar periodicity has not been found. We explain it by a frequency shift of the response from the 27.2 days to the 25.3 days periodicity via amplitude modulation. For the 25.3 days oscillation, prominent differences between the maximum and minimum of the 11-year solar cycle have been found in the coherence between the 10.7 cm solar radio flux and the height/temperature fields: the relationships are stronger at solar maximum than at the minimum of the 11-year cycle. The same differences, but to a greater extent, are revealed for the oscillation with a period of 54.4 days. Coherence and amplitude estimates for this doubled solar rotation periodicity exhibit strong differences between extrema of the 11-year solar cycle. Phase estimates also demonstrate a clear difference between high and low solar activity: on the average, the delay of the atmospheric response after the solar signal is smaller at solar maximum than at solar minimum. Thus, we conclude that the mechanism of the influence of the 11-year solar cycle on the winter middle stratosphere can include both a direct effect of the frequency corresponding to the doubled solar rotation periodicity and an indirect effect of modulation of the intensity of the interaction between the solar 27.2 days oscillation and seasonal atmospheric variations.  相似文献   

12.
Measurements of solar EUV irradiance show, besides the ~11-year Schwabe cycle, a series of oscillations with a ~27-day period. They are generally explained by the passage of active regions across the solar surface resulting from the Sun's rotation, but the calculated amplitude underestimates the observed long-term variation in irradiance (Lean 1991). The variant of this model proposed here is modulation of EUV emission from the corona by rotation of the Sun's radiative zone. The response would be immediate, raising the prospect of short-term forecasting of EUV effects on space weather and on the Earth's atmospheric circulation.  相似文献   

13.
Spatiotemporal variations of the quasi-biennial oscillation (QBO) in temperature and ozone over the tropical–subtropical belts (40°N–40°S) have been studied using Microwave Limb Sounder data for the period 1992–1999. Wavelet analysis has been performed to study inter-annual variations in amplitude and phases of the QBO. Latitude-height cross-sections of the amplitudes of temperature and ozone QBO exhibit a double-peak structure near the equator. Phase structure reveals that the temperature QBO descended faster than the ozone QBO. Cross-wavelet analysis shows an anti-phase relation between the amplitudes of the temperature and ozone QBO in the upper stratospheric region, whereas in-phase relation exists in the middle stratospheric region.  相似文献   

14.
The spectral structure of stratospheric fields (temperature and geopotential) is analyzed in terms of spherical harmonics in an effort to study the long-term behaviour of large-scale circulation patterns, as well as their connections to some extra-terrestrial effects. The daily meteorological data from the Free University Berlin (FUB) cover more or less the period 1976–1996 and are available for stratospheric levels of 50, 30 and 10 hPa. The analysis of the annual cycle of spherical harmonics is introduced, and changes of the principal wave components are compared with the changes in different sets of solar, geomagnetic and global circulation indices. This paper also deals with interannual variability with special emphasis on quasibiennial oscillations (QBO) and El Nino and Southern Oscillations (ENSO). Although this is a rather preliminary study, the decomposition of the stratospheric field into complex spherical harmonics seems to be a powerful technique in investigating and qualifying the response of the global atmospheric system to the changes in solar and geomagnetic activity, and in qualifying the relationships between large-scale circulation patterns and various oscillations such as QBO or ENSO, Using this technique, reasonable strong connections were found between wave numbers and interannual factors, and these connections were tentatively interpreted in terms of statistics. A very high degree of correlation was found for the four-trough shape of the polar vortex.  相似文献   

15.
The availability of global gridded precipitation and outgoing long-wave radiation (OLR) data after 1978 makes possible an investigation of the influence of the decadal solar oscillation in the tropics during three solar maxima and two solar minima. The NCEP/NCAR reanalyses starting in the 1950s allows the inclusion of an additional two solar maxima and minima to look for consistency of response across a longer time period. In the northern summer (July–August), the major climatological tropical precipitation maxima are intensified in solar maxima compared to solar minima during the period 1979–2002. The regions of this enhanced climatological precipitation extend from the Indian monsoon to the West Pacific oceanic warm pool and farther eastwards in the Intertropical Convergence Zone of the North Pacific and North American Monsoon, to the tropical Atlantic and greater rainfall over the Sahel and central Africa. The differences between solar maxima and minima in the zonal mean temperature through the depth of the troposphere, OLR, tropospheric vertical motion, and tropopause temperature are consistent with the differences in the rainfall. The upward vertical motion is stronger in regions of enhanced tropical precipitation, tropospheric temperatures are higher, tropopause temperatures are lower, and the OLR is reduced due to higher, colder cloud tops over the areas of deeper convective rainfall in the solar maxima than in the minima. These differences between the extremes of the solar cycle suggest that an increase in solar forcing intensifies the Hadley and Walker circulations, with greater solar forcing resulting in strengthened regional climatological tropical precipitation regimes. These effects are as strong or even more pronounced when warm and cold extremes in the Southern Oscillation are removed from the analyses. Additionally, lower stratospheric temperatures and geopotential heights are higher with greater solar forcing suggesting ozone interactions with solar forcing in the upper stratosphere.  相似文献   

16.
The variability of stratospheric planetary waves and their possible connection with the 11-year solar cycle forcing have been investigated using annual-mean temperatures for the period of 1958–2001 derived from two reanalysis data sets. The significant planetary waves (wavenumbers 1–3) can be identified in the northern mid-high latitudes (55–75°N) in the stratosphere using this data. Comparisons with satellite-retrieved products from the Microwave Sounding Unit (MSU) confirm the significant planetary wave variability seen in the reanalyses. A planetary wave amplitude index (PWAI) is defined to indicate the strength of the stratospheric planetary waves. The PWAI is derived from Fourier analysis of the temperature field for wavenumbers 1–3 and averaged over 55–75°N latitude and the 70–20 hPa layers. The results include two meaningful inter-annual oscillations (2- and 8-year) and one decadal trend (16-year) that was derived from wavelet analysis. The stratospheric temperature structure of the wave amplitudes appear associated with the Arctic Oscillation (AO) which explicitly changed with the PWAI. The temperature gradients between the polar and mid-high latitudes show opposite tendencies between the top-10 strong and weak wave regimes.The variation of the planetary wave amplitude appears closely related to the solar forcing during the recent four solar cycles (20–23). The peak of the 2-year oscillation occurs synchronously with solar minimum, and is consistent with the negative correlation between the PWAI and the observed solar UV irradiance. The UV changes between the maxima and minima of the 11-year solar cycle impact the temperature structure in the middle-lower stratosphere in the mid-high latitudes and hence influence the planetary waves. During solar maximum, the dominant influence appears to be exerted through changes in static stability, leading to a reduction in planetary wave amplitude. During solar minimum, the dominant influence appears to be exerted through changes in the meridional temperature gradient and vertical wind shear, leading to an enhancement of planetary wave amplitude.  相似文献   

17.
The effect of long-term (11-year solar cycle) solar UV variability on stratospheric chemical and thermal structure has been studied using a time-dependent one-dimensional model. Previous studies have suggested substantial variations in local and total ozone, and in stratospheric thermal structure from solar minimum to solar maximum. It is shown here that significant variations also occur in some of the trace constituents. Members of the HO x family and N2O exhibit the largest variations, and these changes, if detected, may provide additional means of verifying the presence of solar UV variability and its effects. Some of the species show large phase differences with the assumed solar flux variation. The role of chemical and transport time constants on the time variations of the trace species is examined. Comparisons with reported ozone and temperature data show reasonable agreement for the period 1960 to 1972.  相似文献   

18.
上海佘山地磁台位于中纬度地区,拥有逾百年的连续地磁场观测资料,非常有利于研究地磁活动的周期规律.本文利用该台站1908至2007年的100年磁暴记录,通过时序叠加、傅里叶分析和小波分析研究了磁暴的周期规律.结果表明:强磁暴具有显著的11年、22年和季节变化;弱中等磁暴没有明显的11年周期,并且季节变化的幅度较小.奇/偶太阳活动周相比,强磁暴的季节变化存在一定的差异,低年季节变化不明显,高年季节变化显著,并且偶数周的变化相对复杂.  相似文献   

19.
Using the monthly mean NCEP/NCAR reanalysis and NOAA Extended Reconstructed sea surface temperature (SST) datasets, strong correlations between the SST anomalies in the North Pacific and calculated three-dimensional Eliassen–Palm vertical fluxes are indicated in December 1958–1976 and 1992–2006. These correlations between the interannual variations of the SST anomalies and the penetration of planetary waves into the stratosphere are much less during the decadal sub-period 1976–1992 in the positive phase of the Pacific Decadal Oscillation (PDO) and the decadal cold SST anomalies in the North Pacific. Interannual variations of the polar jet in the lower stratosphere in January are strongly associated with SST anomalies in the Aleutian Low region in December for the years with positive PDO index. This sub-period corresponds well with that of the violation of the Holton–Tan relationship between the equatorial Quasi-Beinnial Oscillation (QBO) and the stratospheric circulation in the extra-tropics. It is shown that interannual and interdecadal variations of stratospheric dynamics, including stratospheric warming occurrences in January, depend strongly on changes of the upward propagation of planetary waves from the troposphere to the stratosphere over North Eurasia in preceding December. These findings give evidences of a large impact of the decadal SST variations in the North Pacific on wave activity in early winter due to changes of thermal excitation of planetary waves during distinct decadal periods. Possible causes of the decadal violation of the Holton–Tan relationship, its relation to the PDO and an influence of the 11-year solar cycle on the stratosphere are discussed.  相似文献   

20.
《Journal of Atmospheric and Solar》2003,65(11-13):1235-1243
The aim of the present paper is to study the solar response in the vertical structure of ozone and temperature over the Indian tropical region and a search for any mutual relationship between their solar coefficients on a decadal scale in the lower stratosphere. For the purpose, the data obtained by ozonesonde and Umkehr methods for the lower stratospheric ozone and that of the total ozone amount from Dobson spectrophotometer during the period 1979–2001 have been analyzed. These data are analyzed using the multi-functional regression model, which takes into account most of the known natural and anthropogenic signals. The NCEP- and MSU-satellite data for the temperature over this region have been used. Results indicate an in-phase correlation of around 0.5 between ozone and solar flux (F10.7) in the vertical structure over the equatorial station, Trivandrum (8.3°N) but no significant correlation over Pune (18.3°N). The solar components of ozone and temperature indicate an in-phase but poor correlation in the lower stratospheric altitudes over both stations. However, when total ozone content data is analyzed, it indicates a very high correlation (⩾0.9) between the solar components of ozone and temperature. The solar trend in the vertical distribution of ozone is found to be of the order of 5–25% per 100 units of F10.7 solar flux for Trivandrum but it is relatively smaller (1.6–15.2%) over Pune. The solar dependence of temperature is found to be quite significant for the entire Indian tropical region with not much latitudinal variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号