首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A simple model of lower trophic level ecosystem has been created to analyze possible environmental control of primary production in eight sub-areas of the Seto Inland Sea. The primary production rates observed by Hashimotoet al. (1997a) in these sub-areas are well reproduced by the model, including horizontal processes such as horizontal transport of nutrients and vertical processes such as vertical mixing, light intensity and sinking of particulate matter. Without taking account of horizontal processes the model also successfully reproduces the observed primary production rates in some areas, but if fails to reproduce those in the others. This shows that the relative importance of the horizontal transport on the primary production differs are by area. Two time scales,T z andT H, are introduced to explain this difference.T z is a vertical cycling time of material, which is defined as the time during which the stock of the material in the water column is utilized for primary production;T H is the horizontal transit time of the material. The relative importance of the horizontal process is well explained by theT H/T z ratio; that is, the horizontal transport process is important in the areas where this ratio is small. Further the possible mechanisms of nutrient supply for the primary production in each sub-area are investigated using this model.  相似文献   

2.
Numerical experiments with two-dimensional nonhydrostatic model have been performed to investigate tidally generated internal waves at the Dewakang sill at the southern Makassar Strait where two large-amplitude “bumps” of relatively shallow water exist. We investigate the effect of these features on vertical mixing, with emphasis on the transformation of the Indonesian throughflow (ITF) water properties. The result shows that large-amplitude internal waves are generated at both bumps by the predominant M2 tidal flow, even though the condition of the critical Froude number and the critical slope are not satisfied. The internal waves induce such vigorous vertical mixing in the sill region that the vertical diffusivity attains a maximum value of 6 × 10−3 m2s−1 and the salinity maximum and minimum core layers characterizing the ITF thermocline water are considerably weakened. Close examination reveals that bottom-intensified currents produced mainly by the joint effect of barotropic M2 flow and internal tides generated in the concave region surrounding both bumps can excite unsteady lee waves (Nakamura et al., 2000) on the inside slopes of the bumps, which tend to be trapped at the generation region and grow into large-amplitude waves. Such generation of unsteady lee waves does not occur in case of one bump alone. Trapping and amplification of the waves in the sill region induce large vertical displacements (∼60 m) of water parcels during one tidal period, leading to strong vertical mixing there. Since the K1 tidal currents are relatively weak, large-amplitude internal waves causing intense vertical mixing are not generated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Alkenone unsaturation indices (UK37 and UK′37) have long been used as proxies for surface water temperature in the open ocean. Recent studies have suggested that in other marine environments, variables other than temperature may affect both the production of alkenones and the values of the indices. Here, we present the results of a reconnaissance field study in which alkenones were extracted from particulate matter filtered from the water column in Chesapeake Bay during 2000 and 2001. A multivariate analysis shows a strong positive correlation between UK37 (and UK′37) values and temperature, and a significant negative correlation between UK37 (and UK′37) values and nitrate concentrations. However, temperature and nitrate concentrations also co-vary significantly. The temperature vs. UK37 relationships (UK37=0.018 (T)−0.162, R2=0.84, UK′37=0.013 (T)−0.04, R2=0.80) have lower slopes than the open-ocean equations of Prahl et al. [1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, 2303–2310] and Müller et al. [1998. Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, 1757–1772], but are similar to the relationships found in controlled studies with elevated nutrient levels and higher nitrate:phosphate (N:P) ratios. This implies that high nutrient levels in Chesapeake Bay have either lowered the UK37 vs. temperature slope, or nutrient levels are the main controller of the UK37 index. In addition, particularly high abundances (>5% of total C37 alkenones) of the tetra-unsaturated ketone, C37:4, were found when water temperatures reached 25 °C or higher, thus posing further questions about the controls on alkenone production as well as the biochemical roles of alkenones.  相似文献   

4.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

5.
Using the “Eikonal Approach” (Henyey et al., 1986), we estimate energy dissipation rates in the three-dimensional Garrett-Munk internal wave field. The total energy dissipation rate within the undisturbed GM internal wave field is found to be 4.34 × 10−9 W kg−1. This corresponds to a diapycnal diffusivity of about 0.3 × 10−4 m2s−1, which is less than the value 10−4 m2s−1 required to sustain the global ocean overturning circulation. Only when the high vertical wavenumber, near-inertial current shear is enhanced can diapycnal diffusivity reach ∼10−4 m2s−1. It follows that the energy supplied at low vertical wavenumbers and low frequencies is efficiently transferred to high vertical wavenumbers and near-inertial frequencies in the mixing hotspots in the real ocean.  相似文献   

6.
The TCO2, O2, TA and δ13C data of the 1969 Geosecs Intercalibration Cruise was analyzed and found to be consistent with a vertical mixing model which assumes that each point along a vertical profile is a mixture of the upper and lower boundaries. Calculated regression coefficients are in agreement with the model of Redfield et al. (1963) and with the assumption that TA variation is due to carbonate reaction. Oxygen consumption and TCO2 production decrease exponentially with depth and approximately 80% of ΔCO2 can be accounted for, on average, by O2 consumption. The remaining 20% are probably due to carbonate solution which seems to take place at depths below 2,500 m. The present study suggests that the isotopic composition (δ13C) of the carbon source, required to account for most of the oxygen consumed, may be heavier than the value of −23%. assigned to dissolved organic carbon and particulate organic carbon.  相似文献   

7.
An air-sea buoyancy flux out of the ocean between the surface outcroppings of different isopycnals must be balanced by a convergence of advective and diffusive fluxes of buoyancy across those isopycnals (Walin, 1982; Tziperman, 1986; Garrett et al., 1995). For steady conditions, the diapycnal diffusive flux due to vertical mixing in the surface mixed layer is very small, so that the advective buoyancy flux dominates (Speer, 1993; Garrett et al., 1995). The associated advective buoyancy flux can then be used to estimate the volume flux of water out of the base of the surface mixed layer. The resulting thermodynamic algorithm provides a valuable estimate of water mass formation in the ocean.In contrast, for the time-dependent real ocean with horizontal and vertical gradients of the horizontal buoyancy gradient, diurnal and seasonal mixed layer deepening and entrainment in the presence of a buoyancy jump at the base of the mixed layer contributes to the annual volume flux out of the base of the deepest (wintertime) mixed layer. The mismatch between the predictions of the ideal algorithm and measured rates of water mass formation (Speer, 1997) may thus be partly due to mixed layer processes rather than diapycnal mixing in the thermocline.  相似文献   

8.
湍流扩散过程导致的硝酸盐垂向输运对海水表层的浮游植物生长和初级生产力的大小有着重要影响。本文基于2018年夏季黄、东海水文环境、硝酸盐浓度和湍动能耗散率的同步、原位数据,分析了海域温度、盐度和硝酸盐的空间分布特征,结果表明营养盐含量丰富的黄海冷水团、长江冲淡水、东海北部底层混合水与黑潮次表层水是影响研究海域硝酸盐分布的主要水团。利用垂向湍扩散硝酸盐通量公式,计算了三个选定断面上的硝酸盐垂向扩散通量,其高值区与湍流扩散系数的高值区的位置基本一致。针对存在明显硝酸盐跃层的站位,计算得到跨硝酸盐跃层的垂向通量FND的范围在-9.78—36.60mmol/(m2·d)之间,在黄海冷水团区,夏季温跃层限制了该区营养盐向近表层的湍流垂向扩散;东海北部底层混合水区,湍流垂向扩散向上层补充了大量硝酸盐,促进了跃层之上浮游植物的生长;黑潮次表层水影响海区,夏季中层水体混合较弱,跨跃层的垂向通量也普遍偏低。开展硝酸盐垂向扩散通量的计算与分析,对进一步明确营养盐的输运机制有着重要研究意义。  相似文献   

9.
The Richardson number dependence of vertical eddy diffusion coefficients in the western Equatorial Pacific Ocean was examined on the basis of a Microstructure Profiler (MSP) observations during the cruise of Natsushima (JAPACS-89). The Richardson numberR i was estimated by using the mean shear of velocity profile measured by an Acoustic Doppler Current Profiler (ADCP) with the vertical interval of 15 meters within one or two hours of the each MSP cast. The raw data plot of the vertical eddy diffusion coefficientK p shows a large scatter with increasing tendency belowR i =0.5. The relation between the mean vertical eddy diffusion coefficientK p and the Richardson numberR i , averaged over every 0.025 in theR i , supports the model of Pacanowski and Philander (1981) in the range ofR i >0.5, but coincides with the result of Peterset al. (1988) in the range ofR i <0.5.  相似文献   

10.
Observations were made of time variations of carbon dioxide in seawater, pCO2, and in the atmosphere, PCO2, in the Seto Inland Sea of Japan. The pCO2 data showed well defined diurnal variation; high values at nighttime and low values during daylight hours. The pCO2 correlated negatively with dissolved oxygen. These results denote that the diurnal variation of pCO2 is associated with effects of photoplankton's activity in seawater. The pCO2 measured in the Seto Inland Sea showed higher values than the PCO2 during June to November, denoting transport of carbon dioxide from the sea surface to the atmosphere, and lower values during December to May, denoting transport of carbon dioxide from the atmosphere to the sea surface. The exchange rates of carbon dioxide were calculated using working formula given by Andriéet al. (1986). The results showed that the Seto Inland Sea gained carbon dioxide of 1.0 m-mol m–2 d–1 from the atmosphere in March and lost 1.7 m-mol m–2 d–1 to the atmosphere in August.  相似文献   

11.
We report the first application of a biogeochemical model in which the major elemental composition of the phytoplankton is flexible, and responds to changing light and nutrient conditions. The model includes two phytoplankton groups: diatoms and non-siliceous picoplankton. Both fix C in accordance with photosynthesis-irradiance relationships used in other models and take up NO3 and NH4+ (and Si(OH)4 for diatoms) following Michaelis-Menten kinetics. The model allows for light dependence of photosynthesis and NO3 uptake, and for the observed near-total light independence of NH4+ uptake and Si(OH)4 uptake. It tracks the resulting C/N ratios of both phytoplankton groups and Si/N ratio of diatoms, and permits uptake of C, N and Si to proceed independently of one another when those ratios are close to those of nutrient-replete phytoplankton. When the C/N or Si/N ratio of either phytoplankton group indicates that its growth is limited by N, Si or light, uptake of non-limiting elements is controlled by the content of the limiting element in accordance with the cell-quota formulation of Droop (J. Mar. Biol. Ass. U.K 54 (1974) 825).We applied this model to the Bermuda Atlantic Time-series Study (BATS) site in the western Sargasso Sea. The model was tuned to produce vertical profiles and time courses of [NO3], [NH4+] and [Si(OH)4] that are consistent with the data, by adjusting the kinetic parameters for N and Si uptake and the rate of nitrification. The model then reproduces the observed time courses of chlorophyll-a, particulate organic carbon and nitrogen, biogenic silica, primary productivity, biogenic silica production and POC export with no further tuning. Simulated C/N and Si/N ratios of the phytoplankton indicate that N is the main growth-limiting nutrient throughout the thermally stratified period and that [Si(OH)4], although always limiting to the rate of Si uptake by diatoms, seldom limits their growth rate. The model requires significant nitrification in the upper 200 m to yield realistic time courses and vertical profiles of [NH4+] and [NO3], suggesting that NO3 is not supplied to the upper water column entirely by physical processes. A nitrification-corrected f-ratio (fNC), calculated for the upper 200 m as: (NO3 uptake—nitrification)/(NO3 uptake+NH4+ uptake) has annual values ranging from only 0.05–0.09, implying that 90–95% of the N taken up annually by phytoplankton is supplied by biological regeneration (including nitrification) in the upper 200 m. Reported discrepancies between estimates of organic C export based on seasonal chemical changes and POC export measured at the BATS site can be almost completely resolved if there is significant regeneration of NO3 via organic-matter decomposition in the upper 200 m.  相似文献   

12.
In two recent studies (Tian et al., Deep-Sea Res. I 43 (1996) 723–738; Campos et al., Deep-Sea Res. II 43 (1996) 455–466), in order to explain the observed temporal variations in the distributions of the dissolved iodine species at the time-series stations in the Mediterranean Sea, the North Atlantic and the North Pacific, diverse assumptions were invoked on the relationships between changes in the speciation of dissolved iodine in the surface oceans and biological production such that the surface enrichment of I was linked to both regenerated production and primary production while the surface depletion of [IO3+I] was linked to “new” production. However, while some of the major conclusions in these studies are critically dependent on these assumptions, the validity of the assumptions has yet to be verified with experimental evidence. On the other hand, while there are still significant unknowns in the understanding of the cycling among dissolved iodine species in the surface oceans, presently available data from laboratory cultures and field observations are consistent with an alternative conceptual model in which IO3 and NO3 are taken up at some ratio to each other during NO3 uptake and almost all of the IO3 taken up is exuded as I. Thus, the depletion of IO3 and the enrichment of I in the surface water are linked to NO3 uptake. This alternative model is also consistent with the data sets presented by Tian et al. (1996) and Campos et al. (1996). By linking the surface depletion of IO3 to NO3 uptake, significantly different biogeochemical behavior of the marine dissolved iodine system may be inferred. The extent to which I may be oxidized to IO3 within the euphotic zone during the residence time of the water in the surface ocean is still an open question.  相似文献   

13.
The interannual variations of CO2 sources and sinks in the surface waters of the Antarctic Ocean (south of 50°S) were studied between 1986 and 1994. An existing, slightly modified one-dimensional model describing the mixed-layer carbon cycle was used for this study and forced by available satellite-derived and climatological data. Between 1986 and 1994, the mean Antarctic Ocean CO2 uptake was 0.53 Pg C year−1 with an interannual variability of 0.15 Pg C year−1.Interannual variation of the Antarctic Ocean CO2 uptake is related to the Antarctic Circumpolar Wave (ACW), which affects sea surface temperature (SST), wind-speed and sea-ice extent. The CO2 uptake in the Antarctic Ocean has increased from 1986 to 1994 by 0.32 Pg C. It was found that over the 9 years, the surface ocean carbon dioxide fugacity (fCO2) increase was half that of the atmospheric CO2 increase inducing an increase of the air–sea fCO2 gradient. This effect is responsible for 60% of the Antarctic Ocean CO2 uptake increase between 1986 and 1994, as the ACW effect cancels out over the 9 years investigated.  相似文献   

14.
The abundance and vertical distribution pattern of a mysidMeterythrops microphthalma were investigated in the Japan Sea. Results from vertical hauls from 602–982 m depth to the surface around Yamato Rise in April 1987 indicated that the dominance (by biomass) ofM. microphthalma was third to fifth of major zooplankton taxa. Vertical distribution investigated at a single station in Toyama Bay in June, September and December 1986 showed that the most part of population of this mysid inhabited consistently below 250 m depth. No marked diurnal vertical migration was evident. Data on body composition and oxygen consumption rate ofM. microphthalma are presented. Water content of the body was 75.6–83.8% of wet weight, and ash was 11.4–20.4% of dry weight. Carbon, hydrogen and nitrogen were 37.9–47.5%, 6.2–7.4% and 9.4–10.1%, respectively, of dry weight. Oxygen consumption rates were 2.2–11.0µl O2 individual–1 hr–1 at 0.5°C, and were directly proportional to body mass. From the comparison with the published data on epipelagic and bathypelagic mysids it is revealed that both body nitrogen composition and oxygen consumption rate expressed as adjusted metabolic rate [AMR02,µl O2 (mg body N)–0.85 hr–1] ofM. microphthalma are intermediate between high epipelagic and low bathypelagic levels, indicating typical mesopelagic features.  相似文献   

15.
A laboratory investigation of wave forces induced by a regular train of waves on a large pipeline resting on the bed and at various clearances from the bed is presented. From considerations of dimensional analysis horizontal and vertical components of wave forces acting on the pipeline are expressed as force coefficients which are shown to be functions mainly of H/2a, gT2/2a, d/a and e/2a. A simple unseparated flow model based on potential flow theory and Morison's equation is presented for evaluating the maximum forces on the pipeline. The experimental results are com3ared with the theoretical results and data from existing literature. Based on the experimental results, hydrodynamic coefficients CM and CL have been evaluated  相似文献   

16.
A numerical experiment using a three dimensional level model was performed to clarify the mechanism generating a strong coastal current, Kyucho, induced by the passage of Typhoon 0406 around the tip of the Tango Peninsula, Japan in June 2004. Wind stress accompanied by Typhoon 0406 was applied to the model ocean with realistic bottom topography and stratification condition. The model well reproduced the characteristics of Kyucho observed by Kumaki et al. (2005), i.e., the strong alongshore current with maximum velocity of 53 cm s−1 and its propagation along the peninsula with propagation speed of about 0.6 m s−1 one half-day after the typhoon’s passage. Coastal-trapped waves (CTW) accompanied by downwelling were induced along the northwest coast of the peninsula by the alongshore wind stress. The energy density flux due to the CTW flowed eastward along the coast, and indicated scattering of the CTW around the eastern coast of the peninsula. In addition, significant near-inertial internal gravity waves were also caused in the offshore region from the west of the Noto Peninsula to the north of the Tango Peninsula by the typhoon’s passage. The energy flux density of the near-inertial fluctuations flowed southward off the Fukui coast, and part of the energy flux was trapped on the tip of the Tango Peninsula, flowing with the coast on its right. It was found that the strong current, Kyucho, at the northeastern tip of the Tango Peninsula was generated by superposition of the near-inertial internal gravity waves and subinertial CTW.  相似文献   

17.
A continuously stratified, linear two mode numerical model has been developed. The model incorporates a free surface and finite amplitude topography.The vertical dependence in the equations is removed by applying a Galerkin procedure which uses the normal modes as test functions. The vertical structure is therefore determined by the normal modes.In order to find a suitable efficient numerical scheme to solve the equations a fairly general phase and stability analysis is carried out for the one dimensional gravity wave equations. The A.D.I. scheme was found to be the most suitable scheme.The model is applied to coastal upwelling. A number of two dimensional (x, z) experiments have been carried out. The advantage of the two mode model above the two layer models is that considerable detail of the vertical structure is readily obtained and that no difficulties with the intersection of interfaces with the topography or the seasurface are present. A three dimensional (x, y, z) test run was done for a region along the south western coast of Africa. The results of this experiment are discussed.  相似文献   

18.
A formulation for the aerodynamic roughness length of air flow over wind waves $$z_0 = \gamma {\text{ }}u_* /\sigma p$$ which was proposed by Toba (1979) and Toba and Koga (1986) from dimensional considerations with some data analysis, is shown to correspond with a formulation for irregular solid surfaces $$(z_0 /h) = a(h/l)^{1 + \beta } $$ which resulted from work by Woodinget al. (1973) and Kustas and Brutsaert (1986);u * is the friction velocity,σ p the spectral peak frequency of wind waves,h the mean height of the solid obstacles,l the mean distance between their crests, andα,Β, andγ are constants. This correspondence is reached by the existence of a statistical 3/2-power law and an effective dispersion relationship for wind waves. Because both approaches of parameterizingz 0 were arrived at independently, they provide each other mutual reinforcement.  相似文献   

19.
The mechanism by which nutrient is supplied to a warm-core ring (WCR) was investigated in order to understand the greater productivity of WCR than that of the Kuroshio, where the WCR originattes. A single WCR was observed in January and May, 1997. The thermostad (a layer of isothermal and isohaline water) of the WCR had different properties from January to May, the differences: Δwater temperature: −0.698°C, Δsalinity: −0.048, Δsigma θ: +0.072, Δnitrite+nitrate-N: +1.83 μM, Δphosphate: +0.011 μM and Δsilicate: +3.2 μM. We examined three possible mechanisms for nutrient supply to WCR in winter, namely: 1) inflow of the Oyashio surface water into WCR; 2) isopycnal mixing with Oyashio water; 3) entrainment of the water below the WCR into the WCR. The results were as follows: 1) When the decrease of salinity was due to the inflow of the Oyashio surface water, the increase of nutrients (nitrite+nitrate-N, phosphate-P and silicate-Si) was estimated to be only 17–27% of the observed increase. 2) When the decrease of salinity was due to isopycnal mixing, the increase of nutrients was estimated to be 30–42% of the observed increase. 3) When the decrease of salinity in the WCR in May was due to entrainment of the water below the WCR in winter by convection, the mixing depth was calculated be 620 m according to the salt budget. The increase of nutrients in this case was calculated to be 82–95% of the observed increase. The main mechanism of nutrient supply to WCR was concluded to be due to the entrainment of the water below the WCR by winter mixing. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号