首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 888 毫秒
1.
The quality of altimeter data and ocean tide model is critical to the recovery of coastal gravity anomalies. In this contribution, three retracking methods (threshold, improved threshold and Beta-5) are investigated with the aim of improving the altimeter data over a shallow water area. Comparison indicates that the improved threshold is the best retracking method over China Sea. Two ocean tide models, NAO99b and CSR4.0, are analyzed. Results show that different tide models used in the processing of altimeter data may result in differences more than 10 mGal in recovered coastal gravity anomalies. Also, NAO99b is more suitable than CSR4.0 over the shallow water area of China Sea. Finally, gravity anomalies over China Sea are calculated from retracked Geosat/GM and ERS-1/GM data by least squares collocation. Comparison with shipborne gravimetry data demonstrates that gravity anomalies from retracked data are significantly superior to those from non-retracked data. Our results have the same order as the other two altimeter-derived gravity models: Sandwell&Smith(V16) and DNSC08.  相似文献   

2.
海洋重力场模型反演的质量主要依赖于采用测高数据的精度、空间分辨率和数据分布密集程度。本文联合Geosat GM/ERM、ERS-1 GM/ERM、TOPEX/Poseidon、Envisat、Cryosat-2、Jason-1 ERM/GM和SARAL/AltiKa等多种测高观测数据集,深入比较了多种波形重跟踪算法的效果,回波数据重跟踪处理后的沿轨海面高标准差。统计表明,Sandwell算法优于MLE-4算法、Davis阈值法、改进阈值法和β参数拟合法;基于不同测高数据波形重采样的结果给出了沿轨海面梯度计算中低通滤波的参数选择方法,并采用Sandwell提出的垂线偏差法,反演了全球海域1′×1′的重力场模型。检核表明,反演结果与DTU13和SIO V23.1模型检核的差值均方根分别为3.4、1.8 mGal,与NGDC船测数据的检核精度为4~8 mGal,且本文模型在部分典型海区内精度更优。  相似文献   

3.
卫星测高数据的沿轨迹重力异常反演法及其应用   总被引:10,自引:0,他引:10  
王海瑛 《测绘学报》2001,30(1):21-26
本文给出了一套基于直角坐标系下的垂线偏差求解重力异常公式 ,并将之发展成为一套新的沿轨迹重力异常求解公式。与其他方法相比 ,本方法无须求解交叠点处沿轨迹和跨轨迹方向的海面高斜率 ,仅需计算沿轨迹方向的海面高斜率 ,因而更为简洁、有效 ,而且分辨率可以更高并可与真正的沿航迹实际船测重力相比较、验证。据此 ,利用 Geosat/GM、ERS-1 /35天及TOPEX/Poseidon三种测高数据 ,反演了南中国海域 (0°~ 2 5°N,1 0 5°~ 1 2 2°E)的 2′× 2′重力异常—— IGG-S。通过与实际船测资料和国际同行提供的重力模型相比 ,IGG-S总体精度达到1 0× 1 0 - 5ms- 2。  相似文献   

4.
This paper analyzes several systematic errors affecting sea surface gradients derived from Seasat, Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and TOPEX/POSEIDON altimetry. Considering the data noises, the conclusion is: (1) only Seasat needs to correct for the non-geocentricity induced error, (2) only Seasat and Geosat/GM need to correct for the one cycle per revolution error, (3) only Seasat, ERS-1/GM and Geosat/GM need to correct for the tide model error; over shallow waters it is suggested to use a local tide model not solely from altimetry. The effects of the sea surface topography on gravity and geoid computations from altimetry are significant over areas with major oceanographic phenomena. In conclusion, sea surface gradient is a better data type than sea surface height. Sea surface gradients from altimetry, land gravity anomalies, ship gravity anomalies and elevation data were then used to calculate the geoid over Taiwan by least-squares collocation. The inclusion of sea surface gradients improves the geoid prediction by 27% when comparing the GPS-derived and the predicted geoidal heights, and by 30% when comparing the observed and the geoid-derived deflections of the vertical. The predicted geoid along coastal areas is accurate to 2 cm and can help GPS to do the third-order leveling. Received 22 January 1996; Accepted 13 September 1996  相似文献   

5.
The accumulation of good quality satellite altimetry missions allows us to have a precise geoid with fair resolution and to compute free air gravity anomalies easily by fast Fourier transform (FFT) techniques.In this study we are comparing two methods to get gravity anomalies. The first one is to establish a geoid grid and transform it into anomalies using inverse Stokes formula in the spectral domain via FFT. The second one computes deflection of the vertical grids and transforms them into anomalies.The comparison is made using different data sets: Geosat, ERS-1 and Topex-Poseidon exact repeat misions (ERMs) north of 30°S and Geosat geodetic mission (GM) south of 30°S. The second method which transforms the geoid gradients converted into deflection of the vertical values is much better and the results have been favourably evaluated by comparison with marine gravity data.  相似文献   

6.
利用卫星测高数据反演海洋重力异常研究   总被引:20,自引:2,他引:20  
全面研究了利用卫得测高数据反演海洋重力异常3种主要方法(即Stokes数据解析反解以及逆Vening-Meinesz公式)的技术特点,建立了3种算法的数学模型及其谱计算式,在以1440阶次位模型定义的标准场中完成了3种算法的数值比较和内部检核,通过仿真试验实现了3种算法的可靠性和稳定性检验,最后,本文利用卫得测高实测对南中国海地区的海洋重力异常进行了实际反演,并将反演结果同船测数据进行了比较。  相似文献   

7.
 Global mean sea surface heights (SSHs) and gravity anomalies on a 2×2 grid were determined from Seasat, Geosat (Exact Repeat Mission and Geodetic Mission), ERS-1 (1.5-year mean of 35-day, and GM), TOPEX/POSEIDON (T/P) (5.6-year mean) and ERS-2 (2-year mean) altimeter data over the region 0–360 longitude and –80–80 latitude. To reduce ocean variabilities and data noises, SSHs from non-repeat missions were filtered by Gaussian filters of various wavelengths. A Levitus oceanic dynamic topography was subtracted from the altimeter-derived SSHs, and the resulting heights were used to compute along-track deflection of the vertical (DOV). Geoidal heights and gravity anomalies were then computed from DOV using the deflection-geoid and inverse Vening Meinesz formulae. The Levitus oceanic dynamic topography was added back to the geoidal heights to obtain a preliminary sea surface grid. The difference between the T/P mean sea surface and the preliminary sea surface was computed on a grid by a minimum curvature method and then was added to the preliminary grid. The comparison of the NCTU01 mean sea surface height (MSSH) with the T/P and the ERS-1 MSSH result in overall root-mean-square (RMS) differences of 5.0 and 3.1 cm in SSH, respectively, and 7.1 and 3.2 μrad in SSH gradient, respectively. The RMS differences between the predicted and shipborne gravity anomalies range from 3.0 to 13.4 mGal in 12 areas of the world's oceans. Received: 26 September 2001 / Accepted: 3 April 2002 Correspondence to: C. Hwang Acknowledgements. This research is partly supported by the National Science Council of ROC, under grants NSC89-2611-M-009-003-OP2 and NSC89-2211-E-009-095. This is a contribution to the IAG Special Study Group 3.186. The Geosat and ERS1/2 data are from NOAA and CERSAT/France, respectively. The T/P data were provided by AVISO. The CLS and GSFC00 MSS models were kindly provided by NASA/GSFC and CLS, respectively. Drs. Levitus, Monterey, and Boyer are thanked for providing the SST model. Dr. T. Gruber and two anonymous reviewers provided very detailed reviews that improved the quality of this paper.  相似文献   

8.
The contribution of bathymetry to the prediction of quantities related to the gravity field (e.g., gravity anomalies, geoid heights) is discussed in an extended test area of the central Mediterranean Sea. Sea gravity anomalies and a priori statistical characteristics of depths are used in a least-squares collocation procedure in order to produce new depths, giving a better smoothing of the gravity field when using a remove-restore procedure. The effect of the bottom topography on gravity-field modeling is studied using both the original and the new depths through a residual terrain modeling reduction. The numerical tests show a considerable smoothing of the sea gravity anomalies and the available altimeter heights when the new depth information is taken into account according to the covariance analysis performed. Moreover, geoid heights are computed by combining the sea gravity anomalies either with the original depths or with the new ones, using as a reference surface the OSU91A geopotential model. Comparing the computed geoid heights with adjusted altimeter sea-surface heights (SSHs), better results are obtained when subtracting the attraction of the new depth information. Similar results are obtained when predicting gravity anomalies from altimeter SSHs where the terrain effect on altimetry is based on the new bottom topography. Received: 10 September 1996 / Accepted: 4 August 1997  相似文献   

9.
 The single- and dual-satellite crossover (SSC and DSC) residuals between and among Geosat, TOPEX/Poseidon (T/P), and ERS 1 or 2 have been used for various purposes, applied in geodesy for gravity field accuracy assessments and determination as well as in oceanography. The theory is presented and various examples are given of certain combinations of SSC and DSC that test for residual altimetry data errors, mostly of non-gravitational origin, of the order of a few centimeters. There are four types of basic DSCs and 12 independent combinations of them in pairs which have been found useful in the present work. These are defined in terms of the `mean' and `variable' components of a satellite's geopotential orbit error from Rosborough's 1st-order analytical theory. The remaining small errors, after all altimeter data corrections are applied and the relative offset of coordinate frames between altimetry missions removed, are statistically evaluated by means of the Student distribution. The remaining signal of `non-gravitational' origin can in some cases be attributed to the main ocean currents which were not accounted for among the media or sea-surface corrections. In future, they may be resolved by a long-term global circulation model. Experience with two current models, neither of which are found either to cover the most critical missions (Geosat & TOPEX/Poseidon) or to have the accuracy and resolution necessary to account for the strongest anomalies found across them, is described. In other cases, the residual signal is due to errors in tides, altimeter delay corrections or El Ni?o. (Various examples of these are also presented.) Tests of the combinations of the JGM 3-based DSC residuals show that overall the long-term data now available are well suited for a gravity field inversion refining JGM 3 for low- and resonant-order geopotential harmonics whose signatures are clearly seen in the basic DSC and SSC sets. Received: 15 January 1999 / Accepted: 9 September 1999  相似文献   

10.
李洋  张润宁 《测绘学报》2015,44(4):363-369
应用求解沿轨迹重力异常的垂线偏差法以及求解空间分辨率的交叉谱分析法,建立了高度计测距精度与沿轨迹重力异常反演精度以及空间分辨率的关联性模型。首先依据卫星测高原理,给出了沿轨迹重力异常的误差传播公式,然后以此为基础通过推导交叉谱分析中一致性系数与信噪比的数学表达式,建立了高度计测距精度与空间分辨率的解析关系。数值仿真结果表明:雷达高度计测距精度与沿轨迹重力异常反演精度成正比关系,与空间分辨率成幂函数关系,即高度计测距精度提高m倍,沿轨迹重力异常反演精度提高m倍,全球海域平均空间分辨率提高m0.464 4倍。将数值仿真结果与相关文献中对实际测高数据的处理结果进行比较,验证了理论分析及模型的正确性。  相似文献   

11.
高精度惯性导航系统对重力场模型的要求   总被引:2,自引:0,他引:2  
分析了采用现有重力场模型EGM96进行重力补偿和INS所能达到的定位精度,分析了实施GOCE任务和改进的重力场模型对INS的定位精度的影响,并给出了未来高精度纯惯导系统对重力场精度的要求.  相似文献   

12.
长江口EnviSat测高数据的波形分类重构分析   总被引:1,自引:1,他引:0  
彭福凯  沈云中 《测绘学报》2015,44(6):616-624
采用波形分类重构算法处理EnviSat卫星从2002年10月至2010年5月在长江口近岸海域28°N~32°N、121°E~125°E范围内的波形数据。该区域内海洋波形、波形后缘前端出现峰值的波形、波形后缘后端出现峰值的波形、似镜面波形和复杂波形分别占89.03%、2.95%、0.45%、3.31%和4.26%。根据不同的波形类别采用不同波形算法进行波形重构。同时,分析了不同重构算法之间的系统偏差,并据此确定OCOG算法、Threshold算法和子波形算法的最优阈值水平分别为65%、45%和50%。重构结果表明,波形分类重构算法优于其他波形重构算法,能有效改善原始海面高的精度,改善程度在16.62%~53.86%之间。此外,重构后交叉点差值小于重构前的交叉点差值,与轨迹P089、P411形成的交叉点的海面高差值由1m降低到25cm左右,其余交叉点的差值均在2~6cm。  相似文献   

13.
C. Hwang 《Journal of Geodesy》2001,75(2-3):117-136
 COSMIC is a joint Taiwan–US mission to study the atmosphere using the Global Positioning System (GPS) occultation technique. Improved formulas are developed for the radial, along-track, and cross-track perturbations, which are more accurate than the commonly used order-zero formulas. The formulas are used to simulate gravity recovery using the geodetic GPS data of COSMIC in the operational phase. Results show that the EGM96 model can be improved up to degree 26 using 1 year of COSMIC data. TOPEX/POSEIDON altimeter data are used to derive a temporal gravity variation. COSMIC cannot reproduce this gravity variation perfectly because of data noise and orbital configuration, but the recovered field clearly shows the gravity signature due to mass movement in an El Ni?o. Received: 3 March 2000 / Accepted: 10 November 2000  相似文献   

14.
以反解 Stokes公式为数学模型 ,应用由 T/ P测高数据计算的大地水准面高反演了海域平均重力异常 ,并与船测平均重力异常和 OSU91A位模型计算的平均重力异常进行了比对分析 ,得出了一些有益的结论。  相似文献   

15.
联合多源重力数据反演菲律宾海域海底地形   总被引:2,自引:2,他引:0  
范雕  李姗姗  孟书宇  邢志斌  冯进凯  张驰 《测绘学报》2018,47(10):1307-1315
对比分析重力-海深的“理论导纳”和实际数据的“观测导纳”,获得研究海域有效弹性厚度理论值为10 km。联合重力异常和重力异常垂直梯度数据,应用自适应赋权技术,采用导纳函数方法构建菲律宾海域1'×1'海底地形模型。试验发现,当重力异常垂直梯度反演海深结果与重力异常反演海深结果的权比为2∶3时,所构建的海深模型检核精度最高。同时,联合多源重力数据反演海深能够综合重力异常和重力异常垂直梯度在对待不同海底地形上的反演优势,生成精度优于单独使用重力异常数据和重力异常垂直梯度数据反演的海底地形模型。以船测数据作为外部检核条件,反演模型检核精度略低于V18.1海深模型,而相较于ETOPO1海深模型和DTU10海深模型检核精度分别提高了27.17%和39.02%左右;反演模型相对误差的绝对值在5%范围内的检核点大约占检核点总数的94.25%。  相似文献   

16.
 The new GFZ/GRGS gravity field models GRIM5-S1 and GRIM5-C1, currently used as initial models for the CHAMP mission, have been compared with other recent models (JGM 3, EGM 96) for radial orbit accuracy (by means of latitude lumped coefficients) in computations on altimetry satellite orbits. The bases for accuracy judgements are multi-year averages of crossover sea height differences from Geosat and ERS 1/2 missions. This radially sensitive data is fully independent of the data used to develop these gravity models. There is good agreement between the observed differences in all of the world's oceans and projections of the same errors from the scaled covariance matrix of their harmonic geopotential coefficients. It was found that the tentative scale factor of five for the formal standard deviations of the harmonic coefficients of the new GRIM fields is justified, i.e. the accuracy estimates, provided together with the GRIM geopotential coefficients, are realistic. Received: 20 February 2001 / Accepted: 24 October 2001  相似文献   

17.
The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18 m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether 1-day data overlaps or 1-day predictions are used.  相似文献   

18.
A radar altimeter's normalized backscatter, $sigma^{0}$, is used in many oceanographic applications to infer values of wind speed, wind stress, rain rate, and the presence of biogenic slicks. The waveform retracker used to estimate the key geophysical variables for the altimeters on the Jason-1 and Jason-2 satellites shows increased small-scale variability since the problem is ill-conditioned. A simple empirical adjustment to $sigma^{0}$ improves the separability between various parameters and also improves the along-track profiles of $sigma^{0}$. This leads to the following: 1) more realistic wind fields; 2) better discrimination of rain events; and 3) improved comparison between the Jason-1 and Jason-2 altimeters during their tandem mission.   相似文献   

19.
本文联合T/P数据、T/P新轨道数据、ERS数据、GFO数据、GeosatGM数据和ERS-1/168数据,用测高卫星记录点的位置信息直接计算沿轨大地水准面的方向导数,结合测线轨迹方向的方位角在交叉点处推求垂线偏差,然后利用逆Vening-Meinesz公式计算了中国近海(0o~41oN,105o~132oN)2′×2′格网分辨率的海域重力异常模型。将其与CLS_SHOW99重力异常模型比较,统计结果表示与该模型差异的RMS为8.15mgal,在剔除差值大于20mgal的点(剔除3.3%)以后,RMS为4.72mgal;与某海区船测重力异常比较的RMS为8.91mgal。  相似文献   

20.
Satellite radar altimetry has been monitoring the earth’s oceans from space for several decades. However, only the GEOSAT and ERS-1 geodetic mission data recorded more than a decade ago provide altimetry with adequate spatial coverage to derive a high-resolution marine gravity field. The original geodetic mission data suffer from degradation in quality and coverage close to the coast and in Polar Regions as well as the occasionally wrongly retracking of these, even in the open ocean. In order to improve the quality of these geodetic mission data and to derive a new improved global marine gravity field called DNSC08GRA, a new double retracking technique for analyzing the waveform data has been developed. Multiple retracking allows the system to retrack more data to increase the spatial coverage of the data. Subsequently, a second retracking run is used to enhance the SSH determination by using information from the first fitting to inform the second set of retrackers about smoothly varying sea state parameters. The development of the new global marine gravity field DNSC08GRA is described in this paper. Besides application of new retracking techniques the radar altimetry has been processed using EGM2008 as reference and augmented with ArcGP gravity data and laser altimetry from ICESat to close the Polar gap. DNSC08GRA is seen to perform significantly better than previous global marine gravity field like KMS02. The improvement in accuracy is better than 20% in general, but in coastal regions, the improvement is in many places of the order of 40–50% compared to older global marine gravity field KMS02.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号