首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ~(13)C values of the calcite samples range from-2.5‰ to 2.3‰, the δ~(18)O_(H2 O) and δD_(VSMOW) values of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ~(13)C, δ~(18)O_(H2 O) and δD_(V-SMOW) values of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ~(34)S_(V-CDT) values of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.  相似文献   

2.
《Resource Geology》2018,68(3):275-286
The volcanic‐hosted Xiangshan uranium orefield is the largest uranium deposit in South China. Recent exploration has discovered extensive Pb–Zn mineralization beneath the uranium orebodies. Detailed geological investigation reveals that the major metallic minerals include pyrite, sphalerite, galena, and chalcopyrite, whilst the major non‐metallic minerals include quartz, sericite, and calcite. New δ18Ofluid and δDfluid data indicate that the ore‐forming fluids were mainly derived from magmatic, and the sulfide δ34S values (2.2–6.9‰) suggest a dominantly magmatic sulfur source. The Pb isotope compositions are homogeneous (206Pb/204Pb = 18.120–18.233, 207Pb/204Pb = 15.575–15.698, and 208Pb/204Pb = 37.047–38.446). The 87Sr/86Sr ratios of sulfide minerals range from 0.7197 to 0.7204, which is much higher than volcanic rocks and fall into the range of metamorphic basement. Lead and strontium isotopic compositions indicate that the metallogenic materials probably were derived from metamorphic basement. Pyrite Rb–Sr dating of the ores yielded 131.3 ± 4.0 Ma, indicating that the Pb–Zn mineralization occurred in the Early Cretaceous.  相似文献   

3.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

4.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

5.
Carbonate‐replacement polymetallic mineralization at the Huanzala deposits (9°51′S, 77°00′W) was conducted in two contrasting stages that occurred in almost the same location. Early‐stage mineralization has a relation with a granodiorite porphyry stock, whereas the late‐stage mineralization is genetically associated with quartz porphyry sills. The early stage involved low to intermediate sulfidation Cu–Zn–(Pb) mineralization associated with metasomatic skarn, and the late stage involved high to intermediate sulfidation Cu–Zn–Pb–(Mn) mineralization associated with hydrothermal alteration characterized by paragonitic sericitization. The orebodies are hosted by steeply dipping (approximately 60°NE) Lower Cretaceous carbonate rocks in a relatively narrow range of approximately 4 km in horizontal extent and less than 1 km in depth. The pathway of the early‐stage brine‐derived fluids (300–>400°C, >33 wt% NaCl equivalent) along a plot of log against 1000/T is best explained by the progressive dual decline of the value and the temperature under rock‐buffering conditions; this decline saw the pathway progress through the stability field of pyrrhotite to reach that of pyrite and promoted a decrease in FeS from 14.5 to 1.6 mol% in the sphalerite. In contrast, an explanation for the pathway of the late‐stage fluids (140–290°C, 3–13 wt% NaCl equivalent) is given by an almost isothermal decline at approximately 270°C, with passing through the stability field of pyrite–bornite to reach that of chalcopyrite, promoting an increase in FeS from 0.1 to 1.6 mol% in the sphalerite, suggesting gas‐buffering conditions. The ore formation pressure records in the fluid inclusions illustrate an approximately 2‐km erosion during the roughly 2‐Myr total lifetime of the hydrothermal system.  相似文献   

6.
The Chandmani Uul deposit is located in Dornogovi province, Southeastern Mongolia. Iron oxide ores are hosted in the andesitic rocks of the Shar Zeeg Formation of Neoproterozoic to Lower‐Cambrian age. Middle‐ to Upper‐Cambrian bodies of granitic rocks have intruded into the host rocks in the western and southern regions of the deposit. The wall rocks around the iron oxide ore bodies were hydrothermally altered to form potassic, epidote, and sericite–chlorite alteration zones, and calcite and quartz veinlets are ubiquitous in the late stage. Since granitic rocks also underwent potassic alteration, the activity of the granitic rocks must have a genetic relation to the ore deposit. The ore mineral assemblage is dominated by iron oxides such as mushketovite, euhedral magnetite with concentric and/or oscillatory zoning textures, and cauliflower magnetite. Lesser amounts of chalcopyrite and pyrite accompany the iron oxides. Among all these products, mushketovite is dominant and is distributed throughout the deposit. Meanwhile, euhedral magnetite appears in limited amounts at relatively shallow levels in the deposit. By contrast, cauliflower magnetite appears locally in the deeper parts of the deposit, and is associated with green‐colored garnet and calcite. Sulfide minerals are ubiquitously associated with these iron oxides. The oxygen isotope (δ18O) values of all types of magnetite, quartz, and epidote were found to be ?5.9 to ?2.8‰, 10.5 to 14.9‰, and 3.6 to 6.6‰, respectively. The δ18O values of quartz–magnetite pairs suggest an equilibrium isotopic temperature near 300°C. The calculated values of δ18O for the water responsible for magnetite ranged from 2 to 10‰. All the data obtained in this study suggest that the iron oxide deposit at the Chandmani Uul is a typical iron oxide–copper–gold deposit, and that this deposit was formed at an intermediate depth with potassic and sericite–chlorite alteration zones under the oxidized conditions of a hematite‐stable environment. The δ18O range estimated implies that the ore‐forming fluid was supplied by a crystallizing granodioritic magma exsolving fluids at depth with a significant contribution of meteoric water.  相似文献   

7.
The Shabaosi deposit is the only large lode gold deposit in the northern Great Xing'an Range. The gold ore bodies are hosted by sandstone and siltstone of the Middle Jurassic Ershi'erzhan Formation, and are controlled by three N–S‐trending altered fracture zones. The gold ore bodies are composed of auriferous quartz veinlets and altered rocks. Fluid inclusion studies indicate that the ore‐forming fluids belong to a H2O–NaCl–CO2–CH4 system, with salinities between 0.83 and 8.28 wt% NaCl eq., and homogenization temperatures ranging from 180 to 320 °C. The δ34S values of sulphides show a large variation from −16.9‰ to 8.5‰. The Pb isotope compositions of sulphides are characterized by a narrow range of ratios: 18.289 to 18.517 for 206Pb/204Pb, 15.548 to 15.625 for 207Pb/204Pb, and 38.149 to 38.509 for 208Pb/204Pb. The μ values range from 9.36 to 9.51. These results suggest that the ore‐forming fluids/materials were mainly of magmatic hydrothermal origin, derived from magmas produced by partial melting of the lower crust. The 40Ar/39Ar age of auriferous quartz veinlets from the Shabaosi gold deposit is about 130 Ma. The Shabaosi gold deposit has counterparts in similar orogenic gold deposits, and was formed during the post‐collisional setting of the Mongolia–Okhotsk Orogen. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The A'gui Cu deposit is located in the eastern slope of the southern Great Xing'an Range (SGXR), and it is a vein-type Cu deposit spatially and temporally related to the Cretaceous monzogranite which intruded Pingshan Formation. Vein-type Cu orebodies are mainly hosted in the NE and nearly EW faults. Previous studies on the A'gui deposit mainly focused on geological exploration, and there was no study on its fluid evolution and genesis. Therefore, we carried out conducted fluid inclusion and stable isotope (C–H–O–S–Pb) analysis to study the fluid evolution, fluid and ore-forming material sources and genesis of the A'gui deposit. According to the field investigations and mineral crosscutting relationships, four paragenetic stages were identified: quartz–pyrite–chalcopyrite–pyrrhotite–arsenopyrite ± magnetite (Stage I), quartz–pyrite–chalcopyrite (Stage II), quartz–chalcopyrite ± pyrite–sphalerite–galena (Stage III) and carbonate ± quartz (Stage IV). From Stage I to Stage II, the assemblage of fluid inclusions (FIs) in quartz is characterized by the development of daughter mineral–bearing three–phase FIs (SL–type), vapour FIs (V–type), vapour–rich two–phase aqueous FIs (LV–type) and liquid–rich two–phase aqueous FIs (VL–type). Only VL–type FIs appeared in the Stage III quartz and Stage IV calcite. The homogenization temperatures of FIs in stages I, II, III and IV are 329–390 °C, 255–336 °C, 166–244 °C and 120–157 °C, with salinities of 3.37–45.33 wt%, 3.53–39.76 wt%, 4.17–7.86 wt% and 3.37–7.15 wt% NaCl eqv., respectively. The fluid inclusion type assemblage suggested that obvious fluid boiling occurred in the Stage I and Stage II. Fluid boiling may be the reason for the precipitation of useful minerals. According to the HO isotope analysis of stages I–II quartz (δ18OH2O = −2.1 to 3.2 ‰, δDV–SMOW = −128.4 ‰ to −110.6 ‰), the fluid was originally magmatic water. From Stage III to Stage IV (δ18OH2O = −12.3 to −2.3 ‰, δDV–SMOW = −129.6 ‰ to −104.2 ‰), the HO isotope value is obviously close to the meteoric water line, indicating that meteoric water is mixed with evolved magmatic solutions. The ore–forming fluid of the A'gui deposit represents a medium–high temperature NaCl-H2O magmatic hydrothermal system. The C isotope compositions (δCV–PDB = −5.74 ‰ to −4.76 ‰) in stage IV indicate that the C in the fluid was derived from a magmatic source and was affected by meteoric water. In addition, the measured S isotope compositions in stages I–III of the hydrothermal fluids (δ34SV–CDT = 2.2 to 3.7 ‰) indicate that S mainly comes from granitic magma. Further, the Pb isotope (206Pb/204Pb = 18.276–18.367, 207Pb/204Pb = 15.52–15.556, 208Pb/204Pb = 38.157–38.193) in stages I–III indicate that the ore-forming materials are derived from the mixture of mantle and orogenic material. In summary, this study showed the A'gui is a typical magmatic hydrothermal vein-type Cu deposit that related to Cretaceous monzogranite formed under the joint constraints of Mongolia-Okhotsk Ocean and Paleo-Pacific Ocean tectonic system. Fluid boiling and mixing are the main ore-forming mechanism.  相似文献   

9.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

10.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

11.
The Chitudian Zn‐Pb ore deposit, Luanchuan, Henan province, was recently discovered in the southern margin of the North China Craton. The Zn‐Pb orebodies are hosted in the Proterozoic Guandaokou and Luanchuan Groups, occurring as veins in interbedding fracture zones mainly in a WNW‐ and partially in a NS‐direction. The Zn‐Pb ores are characterized by banded, massive, and breccia structures, coarse crystal grains, and a simple mineral composition mainly of galena, sphalerite, pyrite, quartz, dolomite, and calcite. In addition to the vein type orebodies, there are Mo‐ and Zn‐bearing skarn orebodies in the northwest of the Chitudian ore field. Four types of primary fluid inclusions in quartz and calcite were recognized in the Chitudian Zn‐Pb ores, including aqueous, aqueous‐CO2, daughter‐mineral‐bearing aqueous, and daughter‐mineral‐bearing aqueous‐CO2 inclusions, with aqueous inclusion being most common. The homogenization temperatures of the fluid inclusions from the main mineralization stage are from 290°C to 340°C, and the salinities mainly from 3.7 to 14.8 wt% NaCl equivalent. In addition to CO2, CH4 and H2S were detected in the vapor phase and HS in the liquid phase of the fluid inclusions by Laser Raman spectroscopy. The δ34SV‐CDT values of ore sulfides from the Chitudian deposit range from ?0.32‰ to 8.30‰, and show two modal peaks in the histogram, one from 1‰ to 4‰, and the other from 5‰ to 7‰. The former peak is similar to that of porphyry‐type Mo‐W deposits in the area, whereas the latter is relatively close to the sulfur in the strata. The ore sulfur may have been derived from both the magma and the strata. The Pb‐isotopic compositions of the ore minerals from Chitudian, with 206Pb/204Pb from 17.005 to l7.953, 207Pb/204Pb from 15.414 to 15.587, and 208Pb/204Pb from 37.948 to 39.036, are similar to those of Mesozoic porphyries in the Chitudian ore field, suggesting that the ore‐forming metals were mainly derived from the Mesozoic magmatic intrusions. The Chitudian Zn‐Pb deposit is interpreted to be a distal hydrothermal vein‐type deposit, which was genetically related to the proximal, skarn‐type Mo ore deposits in the region.  相似文献   

12.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   

13.
The Zhaxikang Pb-Zn-Ag-Sb deposit, the largest polymetallic deposit known in the Himalayan Orogen of southern Tibet, is characterized by vein-type mineralization that hosts multiple mineral assemblages and complicated metal associations. The deposit consists of at least six steeply dipping veintype orebodies that are hosted by Early Jurassic black carbonaceous slates and are controlled by a Cenozoic N–S-striking normal fault system. This deposit records multiple stages of mineralization that include an early period(A) of massive coarse-grained galena–sphalerite deposition and a later period(B) of Sb-bearing vein-type mineralization. Period A is only associated with galena–sphalerite mineralization, whereas period B can be subdivided into ferrous rhodochrosite–sphalerite–pyrite, quartz–sulfosalt–sphalerite, calcite–pyrite, quartz–stibnite, and quartz-only stages of mineralization. The formation of brecciated galena and sphalerite ores during period A implies reworking of pre-existing Pb–Zn sulfides by Cenozoic tectonic deformation, whereas period B mineralization records extensive openspace filling during ore formation. Fluid inclusion microthermometric data indicate that both periods A and B were associated with low–medium temperature(187–267°C) and low salinity(4.00–10.18% wt. Na Cl equivalent) ore-forming fluids, although variations in the physical–chemical nature of the period B fluids suggest that this phase of mineralization was characterized by variable water/rock ratios. Microprobe analyses indicate that Fe concentrations in sphalerite decrease from period A to period B, and can be divided into three groups with Fe S concentrations of 8.999–9.577, 7.125–9.109, 5.438–1.460 mol.%. The concentrations of Zn, Sb, Pb, and Ag within orebodies in the study area are normally distributed in both lateral and vertical directions, and Pb, Sb, and/or Ag concentrations are positive correlation within the central part of these orebodies, but negatively correlate in the margins. Sulfide S isotope compositions are highly variable(4‰–13‰), varying from 4‰ to 11‰ in period A and 10‰ to 13‰ in period B. The Pb isotope within these samples is highly radiogenic and defines linear trends in 206 Pb/204 Pb vs. 207 Pb/204 Pb and 206 Pb/204 Pb vs. 208 Pb/204 Pb diagrams, respectively. The S and Pb isotopic characteristics indicate that the period B orebodies formed by mixing of Pb–Zn sulfides and regional Sbbearing fluids. These features are indicative of overprinting and remobilization of pre-existing Pb–Zn sulfides by Sb-bearing ore-forming fluids during a post-collisional period of the Himalayan Orogeny. The presence of similar ore types in the north Rhenish Massif that formed after the Variscan Orogeny suggests that Zhaxikang-style mineralization may be present in other orogenic belts, suggesting that this deposit may guide Pb–Zn exploration in these areas.  相似文献   

14.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The Bujinhei Pb–Zn deposit is located in the southern Great Xing'an Range metallogenic belt. It is a representative medium‐ to high‐temperature hydrothermal vein type deposit controlled by fractures, and orebodies hosted in the Permian Shoushangou Formation. The hydrothermal mineralization is classified into three stages: pyrite ± arsenopyrite–quartz (Stage 1), polymetallic sulfide–quartz (Stage 2), and polymetallic sulfide–calcite (Stage 3). Fluid inclusion petrography, laser Raman analyses and microthermometry indicate that the liquid‐rich aqueous inclusions (L) and vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 1 and as medium‐ to high‐ temperature and low‐ to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids. The liquid‐rich (L) and rare vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 2 with medium‐temperature and low‐salinity NaCl–H2O ± CO2 ± CH4 hydrothermal fluids. The exclusively liquid‐rich (L) fluid inclusions are observed in the Stage 3, and the hydrothermal fluid belongs to medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids. The results of hydrogen and oxygen isotope analyses indicate that ore‐forming fluids were initially derived from the magmatic water and mixed with local meteoric water in the late stage (δ18OH2O‐SMOW = 6.0 to 2.2‰, δDSMOW = ?103 to ?134‰). The carbon isotope compositions (?18.4‰ to ?26.5‰) indicate that the carbon in the fluid was derived from the surrounding strata. The sulfur isotope compositions (5.7 to 15.2‰) indicate that the ore sulfur was also primarily derived from the strata. The ore vein No. 1 occurs in fractures and approximately parallel to the rhyolite porphyry; orebodies have a close spatial and temporal relationship with the rhyolite porphyry. The rhyolite porphyry yielded a crystallization age of 122.9  ± 2.4 Ma, indicating that the Bujinhei deposit may be related to the Early Cretaceous magmatic event. Geochemical analyses reveal that the Bujinhei rhyolite porphyry is high in K2O and peraluminous, and derived from an acidic liquid as a result of strong interaction with hydrothermal fluid during the late magmatic stage; it is similar to A2‐type granites, and formed in a backarc extensional environment. These results indicate that the Bujinhei Pb–Zn deposit was a vein type system that formed in Early Cretaceous and influenced by the Paleo‐Pacific tectonic system. Bujinhei deposit is a representative hydrothermal vein type deposit on the genetic types, and occurs on the western slope of the southern Great Xing'an Range. The ore‐forming fluids were medium‐ to high‐temperature and low‐to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids, which became medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids in later stages, and came from magmatic water and mixed with meteoric water, whereas the ore‐forming materials were mainly derived from the surrounding strata. The LA–ICP–MS zircon U–Pb dating indicates that the Bujinhei deposit formed at the period of late Early Cretaceous, potentially in a backarc extensional environment influenced by the Paleo‐Pacific tectonic system.  相似文献   

16.
The Nage Cu-Pb deposit,a new found ore deposit in the southeast Guizhou province,southwest China,is located on the southwestern margin of the Jiangnan Orogenic Belt.Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations,and are structurally controlled by EW-trending fault.It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb.Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks.The ore minerals include chalcopyrite,galena and pyrite,and gangue minerals are quartz,sericite and chlorite.The H-O isotopic compositions of quartz,S-Cu-Pb isotopic compositions of sulfide minerals,Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit.The δ65CuNBS values of chalcopyrite range from-0.09% to +0.33‰,similar to basic igneous rocks and chalcopyrite from magmatic deposits.δ65CuNBS values of chalcopyrite from the early,middle and final mineralization stages show an increasing trend due to63Cu prior migrated in gas phase when fluids exsolution from magma.δ34SCDT values of sulfide minerals range from 2.7‰ to +2.8‰,similar to mantle-derived sulfur(0±3‰).The positive correlation between δ65CuNBS and δ34SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma.δDH2OSMOW and δ18OH2O-SMOW values of water in fluid inclusions of quartz range from 60.7‰ to 44.4‰ and +7.9‰ to +9.0‰(T=260°C),respectively and fall in the field for magmatic and metamorphic waters,implicating that mixed sources for H2O in hydrothermal fluids.Ores and sulfide minerals have a small range of Pb isotopic compositions(208Pb/204Pb=38.152 to 38.384,207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve,and similar to Neoproterozoic host rocks(208Pb/204Pb=38.201 to 38.6373,207Pb/204Pb=15.648 to 15.673 and 206Pb/204Pb=17.820 to 18.258),but higher than diabase(208Pb/204Pb=37.830 to 38.012,207Pb/204Pb=15.620 to 15.635 and206Pb/204Pb=17.808 to 17.902).These results imply that the Pb metal originated mainly from host rocks.The H-O-S-Cu-Pb isotopes tegather with geology,indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.  相似文献   

17.
The Songligou gold‐telluride deposit, located in Songxian County, western Henan Province, China, is one of many gold‐telluride deposits in the Xiaoqinling‐Xiong'ershan district. Gold orebodies occur within the Taihua Supergroup and are controlled by the WNW F101 Fault, and the fault was cut across by a granite porphyry dike. Common minerals in gold orebodies include quartz, chlorite, epidote, K‐feldspar, calcite, fluorite, sericite, phlogopite, bastnasite, pyrite, galena, chalcopyrite, sphalerite, tellurides, gold, bismuthinite, magnetite, and hematite, and pyrite is the dominant sulfide. Four mineralization stages are recognized, including pyrite‐quartz stage (I), quartz‐pyrite stage (II), gold‐telluride stage (III), and quartz‐calcite stage (IV). This work reports the Rb–Sr age of gold‐telluride‐bearing pyrite and zircon U–Pb age of granite porphyry, as well as S isotope data of pyrite and galena. The pyrite Rb–Sr isochron age is 126.6 ± 2.3 Ma (MSWD = 1.8), and the average zircon U–Pb age of granite porphyry is 166.8 ± 4.1 Ma (MSWD = 4.9). (87Sr/86Sr) i values of pyrite and δ34S values of sulfides vary from 0.7104 to 0.7105 and ?11.84 to 0.28‰, respectively. The obtained Rb–Sr isochron age represents the ore formation age of the Songligou gold‐telluride deposit, which is much younger than the zircon U–Pb age of the granite porphyry. Strontium and S isotopes, together with the presence of bastnaesite, suggest that the ore‐forming fluid was derived from felsic magmas with input of a mantle component and subsequently interacted with the Taihua Supergroup. Tellurium was derived from metasomatized mantle and was related to the subduction of the Shangdan oceanic crust and Izanagi plate beneath the North China Craton (NCC). This deposit is a part of the Early Cretaceous large‐scale gold mineralization in east NCC and formed in an extensional tectonic setting.  相似文献   

18.
The Jebel Ressas Pb–Zn deposits in North‐Eastern Tunisia occur mainly as open‐space fillings (lodes, tectonic breccia cements) in bioclastic limestones of the Upper Jurassic Ressas Formation and along the contact of this formation with Triassic rocks. The galena–sphalerite association and their alteration products (cerussite, hemimorphite, hydrozincite) are set within a calcite gangue. The Triassic rocks exhibit enrichments in trace metals, namely Pb, Co and Cd enrichment in clays and Pb, Zn, Cd, Co and Cr enrichment in carbonates, suggesting that the Triassic rocks have interacted with the ore‐bearing fluids associated with the Jebel Ressas Pb–Zn deposits. The δ18O content of calcite associated with the Pb–Zn mineralization suggests that it is likely to have precipitated from a fluid that was in equilibrium with the Triassic dolostones. The δ34S values in galenas from the Pb–Zn deposits range from ?1.5 to +11.4‰, with an average of 5.9‰ and standard deviation of 3.9‰. These data imply mixing of thermochemically‐reduced heavy sulfur carried in geothermal‐ and fault‐stress‐driven deep‐seated source fluid with bacterially‐reduced light sulfur carried in topography‐driven meteoric fluid. Lead isotope ratios in galenas from the Pb–Zn deposits are homogenous and indicate a single upper crustal source of base‐metals for these deposits. Synthesis of the geochemical data with geological data suggests that the base‐metal mineralization at Jebel Ressas was formed during the Serravallian–Tortonian (or Middle–Late Miocene) Alpine compressional tectonics.  相似文献   

19.
The Nianzha gold deposit,located in the central section of the Indus-Yarlung Tsangpo suture(IYS) zone in southern Tibet,is a large gold deposit(Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision(~65-41 Ma).The main orebody is 1760 m long and 5.15 m thick,and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south.High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange.The wall-rock alteration is characterized by silicification in the fracture zone,serpentinization and the formation of talc and magnesite in the ultramafic unit,and chloritization and the formation of epidote and calcite in diorite.Quartz veins associated with Au mineralization can be divided into three stages.Fluid inclusion data indicate that the deposit formed from H_2O-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt%NaCl equivalent.The quartz veins yield δ~(18)O_(fluid) values of 0.15‰-10.45‰,low δD_(V-SMOW)values(-173‰ to-96‰),and the δ~(13)C values of-17.6‰ to-4.7‰,indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids.The pyrite within the diorite has δ~(34)S_(V-CDT) values of-2.9‰-1.9‰(average-1.1‰),~(206)Pb/~(204)Pb values of 18.47-18.64,~(207)Pb/~(204)Pb values of 15.64-15.74,and ~(208)Pb/~(204)Pb values of 38.71-39.27,all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle.The presence of the Nianzha,Bangbu,and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits.We identified three types of mineralization within the IYS,namely Bangbu-type accretionary,Mayum-type microcontinent,and Nianzha-type ophiolite-associated orogenic Au deposits.The three types formed at different depths in an accretionary orogenic tectonic setting.The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.  相似文献   

20.
The Himalayan mineral field includes over 50 quartz-vein type Sb-Au deposits, and placer Au deposits. The poorly documented Laqiong deposit is a typical example of quartz-vein type Sb-Au mineralisation in Tethys Himalayan sequence. The orebody are controlled by shallow north-dipping normal faults and north–south trending faults. Magmatic zircons extracted from muscovitic leucocratic granite from the southern part of the Laqiong mine area yield a Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry U-Pb age of 14 ± 1 Ma (n = 12, MSWD = 0.9) that is similar to the 40Ar/39Ar age of ca. 14 Ma from hydrothermal sericite in auriferous sulphide-quartz veins. The εHf(t) values for the magmatic zircon rims range from −5.4 to −1.9, corresponding to two-stage Hf model ages of 1403–1214 Ma. Quartz from the mineralised veins has δ18OH2O-SMOW values varying from +4.97 to +9.59‰ and δDH2O-SMOW values ranging from −119.7 to −108.1‰. The δ13CV-PDB values for calcite from the ore Stage III range from −6.9 to −5.3‰, and calcite from Stage IV are −3.5 to −1.7‰. The δ18OV-SMOW values for calcite from Stage III are +20.3 to +20.6‰ and for Stage IV are −6.3 to −4.9‰. The stibnite and pyrite samples have 208Pb/204Pb ratios of 38.158 to 39.02, 207Pb/204Pb ratios of 15.554 to 15.698, and 206Pb/204Pb ratios of 17.819 to 18.681, and bulk and in-situ δ34SV-CDT values for stibnite, arsenopyrite and pyrite range from −1.1 to +2.3‰. The calcite from the orebodies are enriched in MREE and depleted in LREE and HREE. Fieldwork, petrological, and geochemical data collected during our study leads to the following salient findings: the mineralising fluid is a mix of magmatic and meteoric fluids; and the deposit is closely related to the emplacement of Miocene granites originating from a thickened continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号