首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

2.
An observational study covering the period 1950–2002 examines a seasonal reversal in the ENSO rainfall signal in the north-central Philippines. In boreal Summer of El Niño (La Niña) events, above (below) average rainfall typically occurs in this area. Rainfall anomalies of opposite sign develop across the country in the subsequent fall. This study investigates the seasonal evolution of the anomalous atmospheric circulation over the western North Pacific (WNP) during both El Niño and La Niña and places these features in the context of the large-scale evolution of ENSO events, including an analysis of changes in tropical cyclone activity affecting the Philippines. The results show that during boreal summer of El Niño (La Niña) events, a relatively narrow, zonally elongated band of enhanced (reduced) low-level westerlies develops across the WNP which serves to increase (decrease) the summer monsoon flow and moisture flux over the north-central Philippines and is associated with an increase (decrease) in the strength of the WNP monsoon trough via the anomalous relative vorticity. Tropical cyclone activity is shown to be enhanced (reduced) in the study region during boreal summer of El Niño (La Niña) events, which is related to the increase (decrease) of mid-level atmospheric moisture, as diagnosed using a genesis potential index. The subsequent evolution shows development of an anomalous anticyclone (cyclone) over the WNP in El Niño (La Niña) and the well-known tendency for below (above) average rainfall in the fall. Prolonged ENSO events also exhibit seasonal rainfall sign reversals in the Philippines with a similar evolution in atmospheric circulation.  相似文献   

3.
Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.  相似文献   

4.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

5.
The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958–2013 (1920–2013). The interannual variations of the first two leading EOF modes are linked with the El Niño–Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO–ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northward to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO–ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest–northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.  相似文献   

6.
Chaofan Li  Riyu Lu  Buwen Dong 《Climate Dynamics》2014,43(7-8):1829-1845
Predictability of the western North Pacific (WNP) summer climate associated with different El Niño–Southern Oscillation (ENSO) phases is investigated in this study based on the 1-month lead retrospective forecasts of five state-of-the-art coupled models from ENSEMBLES. During the period from 1960 to 2005, the models well capture the WNP summer climate anomalies during most of years in different ENSO phases except the La Niña decaying summers. In the El Niño developing, El Niño decaying and La Niña developing summers, the prediction skills are high for the WNP summer monsoon index (WNPMI), with the prediction correlation larger than 0.7. The high prediction skills of the lower-tropospheric circulation during these phases are found mainly over the tropical western Pacific Ocean, South China Sea and subtropical WNP. These good predictions correspond well to their close teleconnection with ENSO and the high prediction skills of tropical SSTs. By contrast, for the La Niña decaying summers, the prediction skills are considerably low with the prediction correlation for the WNPMI near to zero and low prediction skills around the Philippines and subtropical WNP. These poor predictions relate to the weak summer anomalies of the WNPMI during the La Niña decaying years and no significant connections between the WNP lower-tropospheric circulation anomalies and the SSTs over the tropical central and eastern Pacific Ocean in observations. However, the models tend to predict an apparent anomalous cyclone over the WNP during the La Niña decaying years, indicating a linearity of the circulation response over WNP in the models prediction in comparison with that during the El Niño decaying years which differs from observations. In addition, the models show considerable capability in describing the WNP summer anomalies during the ENSO neutral summers. These anomalies are related to the positive feedback between the WNP lower-tropospheric circulation and the local SSTs. The models can capture this positive feedback but with some uncertainties from different ensemble members during the ENSO neutral summers.  相似文献   

7.
The relative impacts of Indian and Pacific Ocean processes on Tanzanian rainfall was evaluated using composite and correlation analyses. It was found that the seasonal responses of rainfall to positive Indian Ocean Dipole (pIOD) and El Niño events are substantial from September–October–November (SON) to December–January–February (DJF), whereas the Indian Ocean Dipole (IOD) exerts more control than El Niño–Southern Oscillation (ENSO) in both seasons. The associated relationship with the sea surface temperature (SST) and large-scale atmospheric circulations revealed distinct features. For the pure pIOD years, there is above-normal rainfall over the entire country. A strong rainfall condition is evident over the Lake Victoria basin and coastal and northeastern highland parts of the country during SON, while areas of the central and southern highlands exhibit substantial rains during DJF. For the pure El-Niño events, Tanzania has suffered from insignificant, weak, and non-coherent rainfall conditions during SON. However, a contrasting insignificant rainfall signature is found between the northern and southern parts of the country during the subsequent DJF season. For the co-occurrence of pIOD and El Niño, significant, excessive rainfall conditions are restricted to over the northern coast and northeastern areas of the country during SON, consistent with the rainfall pattern for pIOD. A weak, positive rainfall condition is observed over the entire country in the following season of DJF. Generally, in terms of Tanzanian rainfall, the IOD/ENSO variability and the associated impacts can be explained by the anomalous SST and circulation anomalies.  相似文献   

8.
The rainy season precipitation in Tibet (RSPT) is a direct cause for local floods/droughts. It also indirectly affects the thermal conditions of the Tibetan Plateau, which can result in anomalous patterns of atmospheric circulation over East Asia. The interannual variability of the RSPT is often linked with the El Niño–Southern Oscillation (ENSO), but the relevant mechanisms are far from being understood, particularly for different types of ENSO events. We investigated the interannual variation of the RSPT in association with different types of ENSO. A quasi-3-yr period of the RSPT (less–more–more precipitation) was significant at the 95% confidence level. A joint multi-taper method with singular value decomposition analysis of the coupled field between the RSPT and the sea surface temperature (SST) revealed that the developing eastern Pacific type El Niño was accompanied by a decrease in the RSPT. The shift from the central Pacific type El Niño to the eastern Pacific La Niña was accompanied by an increase in the RSPT. Weakening of the central Pacific La Niña was accompanied by an increase in the RSPT. Analysis of the mechanism of this coupling, using the same analysis method but other climatic factors, indicated that the gradually strengthening eastern Pacific El Niño can inhibit the Walker circulation, weakening the South Asian summer monsoon, and resulting in transport of less water vapor from the Bay of Bengal to Tibet. The change from the central Pacific El Niño to the eastern Pacific La Niña led to continued strengthening of the Walker circulation with westward movement of the ascending area. This enhanced the South Asian summer monsoon over the Arabian Sea and transported more water vapor to Tibet. The decreasing central Pacific La Niña accompanied by persistent cooling of SSTs in the equatorial Pacific led to a strong eastern North Pacific summer monsoon, causing an anomaly in the easterly transport of water vapor from the Sea of Japan to Tibet and increased RSPT.  相似文献   

9.
Drought patterns across monsoon and temperate Asia over the period 1877–2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June–August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the MADA, provide a useful tool for assessing long-term changes in the characteristics of Asian monsoon droughts in the context of Indo-Pacific climate variability.  相似文献   

10.
The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general circulation model (CGCM), are evaluated. For El Nio developing summers, FGOALS-s2 reproduces the anomalous cyclone over the western North Pacific (WNP) and associated negative precipitation anomalies in situ. In the observation, the anomalous cyclone is transformed to an anomalous anticyclone over the WNP (WNPAC) during El Nio mature winters. The model reproduces the WNPAC and associated positive precipitation anomalies over southeastern China during winter. However, the model fails to simulate the asymmetry of the wintertime circulation anomalies over the WNP between El Nio and La Nia. The simulated anomalous cyclone over the WNP (WNPC) associated with La Nia is generally symmetric about the WNPAC associated with El Nio, rather than shifted westward as that in the observation. The discrepancy can partially explain why simulated La Nin a events decay much faster than observed. In the observation, the WNPAC maintains throughout the El Nio decaying summer under the combined effects of local forcing of the WNP cold sea surface temperature anomaly (SSTA) and remote forcing from basinwide warming in the tropical Indian Ocean. FGOALS-s2 captures the two mechanisms and reproduces the WNPAC throughout the summer. However, owing to biases in the mean state, the precipitation anomalies over East Asia, especially those of the Meiyu rain belt, are much weaker than that in the observation.  相似文献   

11.
The spring asymmetric mode over the Tropical Indian Ocean (TIO) is characterized by contrasting patterns of rainfall and surface wind anomalies north and south of Equator. The asymmetric pattern in rainfall has evolved as a leading mode of variability in the TIO and is strongly correlated with El Niño-Southern Oscillation (ENSO) and positive Indian Ocean Dipole (IOD). The evolution of the asymmetric pattern in rainfall and surface wind during pure El Niño/IOD and co-occurrence years are examined in the twentieth century reanalysis for the period of 1871–2008 and atmospheric general circulation model (AGCM) simulations. The study revealed that spring asymmetric mode is well developed when El Niño co-occurred with IOD (positive) and is driven by the associated meridional gradients in sea surface temperature (SST) and sea level pressure (SLP). The pure El Niño composites are characterized by homogeneous (spatially) SST anomalies (positive) and weaker SLP gradients and convection, leading to weak asymmetric mode. The asymmetric mode is absent in the pure IOD (positive) composites due to the persistence of east west SST gradient for a longer duration than the co-occurrence years. The meridional gradient in SST anomalies over the TIO associated with the ENSO-IOD forcing is therefore crucial in developing/strengthening the spring asymmetric mode. The northwest Pacific anticyclonic circulation further strengthen the asymmetric mode in surface winds by inducing northeasterlies in the north Indian Ocean during pure El Niño and co-occurrence years. The simulations based on AGCM, forced by observed SSTs during the period of 1871–2000 supported the findings. The analysis of available station and ship track data further strengthens our results.  相似文献   

12.
Possible influences of three coupled ocean–atmosphere phenomena in the Indo-Pacific Oceans, El Niño, El Niño Modoki and the Indian Ocean Dipole (IOD), on summer climate in China are studied based on data analysis for the summers of 1951–2007. Partial correlation/regression analysis is used to find the influence paths through the related anomalous mid- and low-level tropospheric circulations over the oceanic region and East Eurasia, including the western North Pacific summer monsoon (WNPSM). Among the three phenomena, El Niño Modoki has the strongest relationship with the WNPSM. When two or three phenomena coexist with either positive or negative phase, the influences exerted by one phenomenon on summer climate in different regions of China may be enhanced or weakened by other phenomena. In 1994 when both El Niño Modoki and IOD are prominent without El Niño, a strong WNPSM is associated with severe flooding in southern China and severe drought in the Yangtze River Valley (YRV). The 500 hPa high systems over China are responsible for heat waves in most parts of China. In 1983 when a strong negative phase of El Niño Modoki is accompanied by moderate El Niño and IOD, a weak WNPSM is associated with severe flooding in the YRV and severe drought in southern China. The 500 hPa low systems over China are responsible for the cold summer in the YRV and northeastern China. For rainfall, the influence path seems largely through the low-level tropospheric circulations including the WNPSM. For temperature, the influence path seems largely through the mid-level tropospheric circulations over East Eurasia/western North Pacific Ocean.  相似文献   

13.
The present study investigates the relationship between extreme north-east (NE) monsoon rainfall (NEMR) over the Indian peninsula region and El Niño forcing. This turns out to be a critical science issue especially after the 2015 Chennai flood. The puzzle being while most El Niños favour good NE monsoon, some don’t. In fact some El Niño years witnessed deficit NE monsoon. Therefore two different cases (or classes) of El Niños are considered for analysis based on standardized NEMR index and Niño 3.4 index with case-1 being both Niño-3.4 and NEMR indices greater than +1 and case-2 being Niño-3.4 index greater than +1 and NEMR index less than −1. Composite analysis suggests that SST anomalies in the central and eastern Pacific are strong in both cases but large differences are noted in the spatial distribution of SST over the Indo-western Pacific region. This questions our understanding of NEMR as mirror image of El Niño conditions in the Pacific. It is noted that the favourable excess NEMR in case-1 is due to anomalous moisture transport from Bay of Bengal and equatorial Indian Ocean to southern peninsular India. Strong SST gradient between warm western Indian Ocean (and Bay of Bengal) and cool western Pacific induced strong easterly wind anomalies during NE monsoon season favour moisture transport towards the core NE monsoon region. Further anomalous moisture convergence and convection over the core NE monsoon region supported positive rainfall anomalies in case-1. While in case-2, weak SST gradients over the Indo-western Pacific and absence of local low level convergence over NE monsoon region are mainly responsible for deficit rainfall. The ocean dynamics in the Indian Ocean displayed large differences during case-1 and case-2, suggesting the key role of Rossby wave dynamics in the Indian Ocean on NE monsoon extremes. Apart from the large scale circulation differences the number of cyclonic systems land fall for case-1 and case-2 have also contributed for variations in NE monsoon rainfall extremes during El Niño years. This study indicates that despite having strong warming in the central and eastern Pacific, NE monsoon rainfall variations over the southern peninsular India is mostly determined by SST gradient over the Indo-western Pacific region and number of systems formation in the Bay of Bengal and their land fall. The paper concludes that though the favourable large scale circulation induced by Pacific is important in modulating the NE monsoon rainfall the local air sea interaction plays a key role in modulating or driving rainfall extremes associated with El Niño.  相似文献   

14.
Understanding the SAM influence on the South Pacific ENSO teleconnection   总被引:3,自引:1,他引:2  
The relationship between the El Niño Southern Oscillation (ENSO) and the Southern Hemisphere Annular Mode (SAM) is examined, with the goal of understanding how various strong SAM events modulate the ENSO teleconnection to the South Pacific (45°–70°S, 150°–70°W). The focus is on multi-month, multi-event variations during the last 50 years. A significant (p < 0.10) relationship is observed, most marked during the austral summer and in the 1970s and 1990s. In most cases, the significant relationship is brought about by La Niña (El Niño) events occurring with positive (negative) phases of the SAM more often than expected by chance. The South Pacific teleconnection magnitude is found to be strongly dependent on the SAM phase. Only when ENSO events occur with a weak SAM or when a La Niña (El Niño) occurs with a positive (negative) SAM phase are significant South Pacific teleconnections found. This modulation in the South Pacific ENSO teleconnection is directly tied to the interaction of the anomalous ENSO and SAM transient eddy momentum fluxes. During La Niña/SAM+ and El Niño/SAM? combinations, the anomalous transient momentum fluxes in the Pacific act to reinforce the circulation anomalies in the midlatitudes, altering the circulation in such a way to maintain the ENSO teleconnections. In La Niña/SAM? and El Niño/SAM+ cases, the anomalous transient eddies oppose each other in the midlatitudes, overall acting to reduce the magnitude of the high latitude ENSO teleconnection.  相似文献   

15.
Being triggered by different physical processes, the eastern Pacific (EP) and central Pacific (CP) El Niño events have several different teleconnection features around the globe. Using the ERA-Interim re-analysis monthly data during the period 1980–2016, the El Niño-Southern Oscillation (ENSO) teleconnections on the global scale and their statistical significance are investigated, with an emphasis on the contrasting features of the EP and CP El Niño events. With some exceptions, the EP El Niño and La Niña have generally similar teleconnection patterns with the reversed sign, while in some parts of the globe different and occasionally contrasting teleconnections of the EP and CP El Niño events are identified. Compared to the CP El Niño, more regions of the world are influenced by the statistically significant positive surface pressure anomalies during the EP El Niño, particularly over the Indian Ocean, tropical Atlantic and Northern Africa. It is found that the mid-tropospheric geopotential height anomalies across the globe are significantly different during the EP and CP El Niño events. Associated with different surface pressure and mid-tropospheric geopotential height anomalies, precipitation anomalies in many regions of the world are found different during the EP and CP El Niño events, particularly over the tropical Pacific, central to eastern equatorial Atlantic and the eastern Sahara. While central and eastern equatorial Atlantic experience statistically significant negative (positive) rainfall anomalies during the EP El Niño (La Niña), the CP El Niño does not have a strong influence on the amount of annual rainfall over the equatorial Atlantic. For the first time, statistically significant anomalously dry conditions are found over some parts of the Middle East and Southwest Asia during La Niña, and over the eastern Sahara during the EP El Niño.  相似文献   

16.
The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.  相似文献   

17.
The contrast between the eastern and central responses of zonal and vertical circulation in the Pacific (EP- and CP-) E1 Nino is observed in the different tropics. To measure the different responses of the atmo- spheric circulation to the two types of E1 Nino, an eastern and a central Pacific southern oscillation index (EP- and CP-SOI) are defined based on the air-sea coupled relationship between eddy sea level pressure and sea surface temperature. Analyses suggest that while the EP-SOI exhibits variability on an interannual (2- 7-yr) time scale, decadal (10-15-yr) variations in the CP-SOI are more dominant; both are strongly coupled with their respective EP- and CP-E1 Nino patterns. Composite analysis suggests that, during EP-ENSO, the Walker circulation exhibits a dipole structure in the lower-level (850 hPa) and upper-level (200 hPa) velocity potential anomalies and exhibits a signal cell over the Pacific. In the case of CP-ENSO, however, the Walker circulation shows a tripole structure and exhibits double cells over the Pacific. In addition, the two types of ENSO events show opposite impacts on global land precipitation in the boreal winter and spring seasons. For example, seasonal precipitation across mainland China exhibits an opposite relationship with the EP- and CP-ENSO during winter and spring, but the rainfall over the lower reaches of the Yangtze River and South China shows an opposite relationship during the rest of the seasons. Therefore, the different relationships between rainfall and EP- and CP-ENSO should be carefully considered when predicting seasonal rainfall in the East Asian monsoon regions.  相似文献   

18.
The El Niño Southern Oscillation plays a key role in modulating interannual rainfall variability in Mexico. While El Niño events are linked to drought in Mexico, uncertainty exists about the spatial pattern and causal mechanisms behind El Niño-induced drought. We use lead/lag correlation analysis of rainfall station data to identify the spatial pattern of drought associated with the summer before, and the spring following, the peak of warm SST anomalies in the eastern equatorial Pacific. We also use atmospheric fields from the North American Regional Reanalysis to calculate the anomalous moisture budget and diagnose the mechanisms associated with El Niño-induced drought in Mexico. We find that reduced rainfall occurs in Mexico in both the summer before and the spring after a peak El Niño event, especially in regions of climatologically strong convection. The teleconnection in the developing phase of El Niño is primarily driven by changes in subsidence resulting from anomalous convection in the equatorial Pacific. The causes of drought during the decaying phase of El Niño events are varied: in some years, descent anomalies dominate other moisture budget terms, while in other years, drying of the boundary layer on the Mexican plateau is important. We suggest that the latter may result from the interaction of weakened southeasterly winds in the Intra-Americas Sea with high topography along the Atlantic coast of Mexico. Weakened winds are likely driven by a reduced sea level pressure gradient between the Atlantic and the Pacific. Changes in easterly wave activity may contribute to drought in the developing phase of El Niño, but may be less important in the decaying phase of El Niño.  相似文献   

19.
A principal component decomposition of monthly sea surface temperature (SST) variability in the tropical Pacific Ocean demonstrates that nearly all of the linear trends during 1950–2010 are found in two leading patterns. The first SST pattern is strongly related to the canonical El Niño-Southern Oscillation (ENSO) pattern. The second pattern shares characteristics with the first pattern and its existence solely depends on the presence of linear trends across the tropical Pacific Ocean. The decomposition also uncovers a third pattern, often referred to as ENSO Modoki, but the linear trend is small and dataset dependent over the full 61-year record and is insignificant within each season. ENSO Modoki is also reflected in the equatorial zonal SST gradient between the Niño-4 region, located in the west-central Pacific, and the Niño-3 region in the eastern Pacific. It is only in this zonal SST gradient that a marginally significant trend arises early in the Northern Hemisphere spring (March–May) during El Niño and La Niña and also in the late summer (July–September) during El Niño. Yet these SST trends in the zonal gradient do not unequivocally represent an ENSO Modoki-like dipole because they are exclusively associated with significant positive SST trends in either the eastern or western Pacific, with no corresponding significant negative trends. Insignificant trends in the zonal SST gradient are evident during the boreal wintertime months when ENSO events typically mature. Given the presence of positive SST trends across much of the equatorial Pacific Ocean, using fixed SST anomaly thresholds to define ENSO events likely needs to be reconsidered.  相似文献   

20.
The sea surface temperature anomaly pattern differs between the central Pacific (CP) and eastern Pacific (EP) El Niños during boreal summer. It is expected that the respective atmospheric response will be different. In order to identify differences in the responses to these two phenomena, we examine the Community Atmosphere Model Version 4 simulations forced with observed monthly sea surface temperature during 1979–2010 and compare with the corresponding observations. For CP El Niño, a triple precipitation anomaly pattern appears over East Asia. During EP El Niño, the triple pattern is not as significant as and shifts eastward and southward compared to CP El Niño. We also examine the influence of CP La Niña and EP La Niña on East Asia. In general, the impact of CP (EP) La Niña on tropics and East Asia seems to be opposite to that of CP (EP) El Niño. However, the impacts between the two types of La Niña are less independent compared to the two types of warm events. Both types of El Niño (La Niña) correspond to a stronger (weaker) western North Pacific summer monsoon. The sensitivity experiments support this result. But the CP El Niño (La Niña) may have more significant influence on East Asia summer climate than EP El Niño (La Niña), as the associated low-level anomalous wind pattern is more distinct and closer to the Asian continent compared to EP El Niño (La Niña).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号