首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The alternative development of coal-bearing hydrocarbon source rocks and low-porosity and low-permeability tight sandstone reservoirs of the Triassic Xujiahe Formation in the Sichuan Basin is favorable for near-source hydrocarbon accumulation. The natural gas composition of the Xujiahe Formation in the Sichuan Basin is dominated by hydrocarbon gases, of which the methane content is80.16%-98.67%. Typically, the C_2~+ content is larger than 5% in main wet gas. The dry gas is mainly distributed in the western and northern regions of the basin. The non-hydrocarbon gases mainly contain nitrogen, carbon dioxide, hydrogen, and helium, with a total content of 2%. The carbon isotope ranges of methane and its homologues in natural gas are: δ~(13)C_1 of-43.8‰ to-29.6‰, δ~(13)C_2 of-35.4‰ to-21.5‰, δ~(13)C_3 of-27.6‰ to-19.8‰,and δ~(13)C_4 of-27.7‰ to-18.8‰. δ~(13)C_3δ~(13)C_4 occurs in some natural gas with a low evolution degree; such gas is mainly coal-related gas from humic-type source rocks of the Xujiahe Formation. As for the natural gas, δ~2 H_(CH4) values ranged from-195‰ to-161‰,δ~2 H_(C2H6) values ranged from-154‰ to-120‰, and δ~2 H_(C3H8) values ranged from-151‰ to-108‰. The dry coefficient,δ~(13)C and δ~2 H_(CH4) are all positively correlated with the maturity of source rocks. The higher the maturity of source rocks is, the larger the natural gas dry coefficient is and the larger the δ~(13)C and δ~2 H_(CH_4) values are, indicative of the characteristic of near-source accumulation. The δ~2 H_(C2H6) value of natural gas is influenced by paleosalinity to a relatively large extent; the higher the paleosalinity is, the larger the δ~2 H_(C2H6) value is. The Pr/Ph value of the condensate oil ranged from 1.60 to 3.43, illustrating light oxidization-light reduction and partial-oxidization characteristics of the depositional environment of coal-bearing source rocks of the Xujiahe Formation. The natural gas light hydrocarbon(C_5-C_7) from the Xujiahe Formation presented two characteristics: the first was the relatively high aromatic hydrocarbon content(19%-32.1%), which reveals the characteristic of natural gas with humic substances of high-maturity; the second was the low content of aromatic hydrocarbon(0.4%-9.3%),reflecting water-washing during the accumulation of the natural gas. The reported research outcomes indicate a potential mechanism for natural gas accumulation in the Xujiahe Formation, which will further guide natural gas exploration in this region.  相似文献   

2.
The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu Ⅱ depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated by methane with content up to 99.89% and 99.91%. The carbon isotope of the methane (δ13C1 ) are 56.7‰ and 60.9‰, and its hydrogen isotope (δD) are 199‰ and 180‰, respectively, indicating the methane from the microbial reduction of CO2 . Based on the data of measured seafloor temperature and geothermal gradient, the gas formed hydrate reservoirs are from depths 24-1699 m below the seafloor, and main gas-generation zone is present at the depth interval of 416-1165 m. Gas-bearing zones include the Hanjiang Formation, Yuehai Formation, Wanshan Formation and Quaternary sediments. We infer that the microbial gas migrated laterally or vertically along faults (especially interlayer faults), slump structures, small-scale diapiric structures, regional sand beds and sedimentary boundaries to the hydrate stability zone, and formed natural gas hydrates in the upper Yuehai Formation and lower Wanshan Formation, probably with contribution of a little thermogenic gas from the deep sedments during this process.  相似文献   

3.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

4.
The Upper Triassic Xujiahe Formation in the Sichuan Basin, SW China consists of a series of coal measures. The first, third and fifth members of this formation are dominated by gas prone dark mudstones and coals. The mudstones contain Type II and III kerogens with average organic carbon contents around 1.96%. These source rocks are mature in the central Sichuan and highly mature in the western Sichuan Basin, characterized by gas generation with subordinate amounts of light oil or condensate oils. The source rocks are intercalated with the sandstone dominated second, fourth and sixth members of the Xujiahe Formation, thus leading to three separate self contained petroleum systems in the region. The proven gas reserves in the Xujiahe Formation are only less than that of the Triassic Feixianguan Formation and the Xujiahe Formation has the second largest gas field (Guang’an gas field) in the basin. Gases derived from the Xujiahe Formation coals generally show a normal stable carbon isotopic trend for C1–C4 n-alkanes, with the highest δ13C2 values among the nine gas pay zones in the basin (?20.7‰ to ?28.3‰), and δ13C1 values as low as ?43.0‰ in the central Sichuan. Gas accumulations with an oil leg have also been found in the eastern and southern Sichuan where the thickness of the Xujiahe Formation is significantly reduced. Gases in these accumulations tend to show low δ13C2 values (?30.0‰ to ?36.3‰), characteristic of oil prone source rocks.  相似文献   

5.
Concentrations and isotopic compositions were determined for H2, N2 and C extracted by stepwise pyrolysis from powdered meteorites, from residues of meteorites partially dissolved with aqueous HF, and from residues of meteorites reacted with HF-HCl solutions. The meteorites treated were the carbonaceous chondrites, Orgueil, Murray, Murchison, Renazzo and Cold Bokkeveld. Data determined for whole rock samples are in approximate agreement with previously published data. Acidification of the meteorites removed the inorganic sources of H2, so that H2 in the HF-HCl acid residues came primarily from insoluble organic matter, which makes up 70–80% fraction of the total carbon in carbonaceous meteorites. The δD in the organic matter differs markedly from previously determined values in organic matter in meteorites. The δD values of organic matter from acid residues of C1 and C2 carbonaceous chondrites range from +650 to + 1150%. The acid residues of the Renazzo meteorite, whose total H2 has a δD of +930‰, gave a δD value of +2500‰. Oxidation of the HF-HCl residue with H2O2 solution removes the high δD and the low δ15N components. The δ13C values range between ?10 and ?21 and δ15N values range between +40 and ?11. The δ15N of Renazzo is unusual; its values range between +150 and ?190.There is good correlation between δD and the concentration of H2 in the acid residues, but no correlation exists between δD, δ13C and δ15N in them. A simple model is proposed to explain the high δD values, and the relationships between δD values and the concentration of H2. This model depends on the irradiation of gaseous molecules facilitating reaction between ionic molecules, and indicates that an increase in the rate of polymerization and accumulation of organic matter on grains would produce an increase in the deuterium concentration in organic matter.  相似文献   

6.
青海木里煤田天然气水合物特征与成因   总被引:3,自引:0,他引:3  
青海木里煤田成功钻获天然气水合物实物样品,使我国成为世界上首次在中低纬度冻土区发现天然气水合物的国家。通过对钻获天然气水合物样品的分析,以及对以往异常可燃气体涌出钻孔的测井曲线的重新解释和对比分析,初步确定天然气水合物赋存于中侏罗统江仓组油页岩段的细粉砂岩夹层内的孔隙和裂隙中。研究结果显示,天然气水合物中的气体以重烃类为主,甲烷达52%~68%;其δ13C值为-50.5‰(PDB标准),并具有δl3Cl<δ13C2<δ13C3<δ13iC4<δl3nC4的特征,其δD值分别为-266‰和-262‰(VSMOW标准),显示出明显的深部热解气特征。结合木里煤田煤层气地质特征,认为煤层气是木里煤田天然气水合物的主要来源,并将其命名为“煤型气源”天然气水合物。   相似文献   

7.
DH and 13C12C ratios were measured for 114 petroleum samples and for several samples of related organic matter. δD of crude oil ranges from ?85 to ?181‰, except for one distillate (?250‰) from the Kenai gas field; δ13C of crude oil ranges from ?23.3 to ?32.5‰, Variation in δD and δ13C values of compound-grouped fractions of a crude oil is small, 3 and 1.1%., respectively, and the difference in δD and δ13C between oil and coeval wax is slight. Gas fractions are 53–70 and 22.6–23.2‰ depleted in D and 13C, respectively, relative to the coexisting oil fractions.The δD and δ13C values of the crude oils appear to be largely determined by the isotopic compositions of their organic precursors. The contribution of terrestrial organic debris to the organic precursors of most marine crude oils may be significant.  相似文献   

8.
The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from ?52.2 to ?14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈?70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = ?38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).  相似文献   

9.
《Geochimica et cosmochimica acta》1999,63(23-24):3959-3966
We propose that organic compounds found in a Miocene limestone from Marmorito (Northern Italy) are source markers for organic matter present in ancient methane vent systems (cold seeps). The limestone contains high concentrations of the tail-to-tail linked, acyclic C20 isoprenoid 2,6,11,15-tetramethylhexadecane (crocetane), a C25 homolog 2,6,10,15,19-pentamethylicosane (PME), and a distinctive glycerol ether lipid containing 3,7,11,15-tetramethylhexadecyl (phytanyl-) moieties. The chemical structures of these biomarkers indicate a common origin from archaea. Their extremely 13C-depleted isotope compositions (δ13C ≈ −108 to −115.6‰ PDB) suggest that the respective archaea have directly or indirectly introduced isotopically depleted, methane-derived carbon into their biomass. We postulate that a second major cluster of biomarkers showing heavier isotope values (δ13C ≈ −88‰) is derived from sulfate-reducing bacteria (SRB). The observed biomarkers sustain the idea that methanogenic bacteria, in a syntrophic community with SRB, are responsible for the anaerobic oxidation of methane in marine sediments. Marmorito may thus represent a conceivable ancient scenario for methane consumption performed by a defined, two-membered bacterial consortium: (1) archaea that perform reversed methanogenesis by oxidizing methane and producing CO2 and H2; and (2) SRB that consume the resulting H2. Furthermore, the respective organic molecules are, unlike other compounds, tightly bound to the crystalline carbonate phase. The Marmorito carbonates can thus be regarded as “cold seep microbialites” rather than mere “authigenic” carbonates.  相似文献   

10.
Surface adsorbed gas surveys and geo-microbiological surveys are well known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish inter-se exploration priorities amongst the identified warm areas. The thermogenic surface adsorbed gaseous hydrocarbons distribution patterns in petroliferous areas are considered to be a credible evidence for the upward migration of hydrocarbons. The present investigation aims to explore correlation between the adsorbed gas distribution pattern and microbial oxidizers in identifying the upward migration of hydrocarbons especially in the tropical black soil terrain of known petroliferous Mehsana Block of North Cambay Basin, India. A set of 135 sub-soil samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotope ratios (13Cmethane and δ13Cethane). The microbial prospecting studies showed the presence of high bacterial population for methane (5.4 × 106 cfu/gm), ethane (5.5 × 106 cfu/gm), propane (4.6 × 106 cfu/gm) and butane oxidizing bacteria (4.6 × 106 cfu/gm) in soil samples. The light gaseous hydrocarbon analysis showed that the concentration ranges of C1, C2, C3, iC4 and nC4 are 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb, respectively, and the value of carbon isotope ranges of methane ?29.5 to ?43.0‰ (V-PDB) and ethane ?19.1 to ?20.9‰ (V-PDB). The existence of un-altered petroliferous microseep (δ13C, ?43‰) of catagenetic origin is observed in the study area. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/gas fields of Mehsana. Microbial surveys can independently precede other geochemical and geophysical surveys to delineate area warm with hydrocarbons, and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the Mehsana Block of Cambay Basin.  相似文献   

11.
Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas was determined,and then a gas filling model was established,in combination with the geological background of the Kuqa Depression.The active energy of CH_4,C_2H_6 and C_3H_8 was gotten after the data of pyrolysis gas products under different heating rates(2℃/h and 20℃/h)were fitted by the Gas O...  相似文献   

12.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time,as long as they are acquired from waters where the dissolved inorganic carbon(DIC)is in isotope equilibrium with the atmospheric CO2.However,in shallow water platforms and epeiric settings,the influence of local to regional parameters on carbon cycling may lead to DIG isotope variations unrelated to the global carbon cycle.This may be especially true for the terminal Neoproterozoic,when Gondwana assembly isolated waters masses from the global ocean,and extreme positive and negative carbon isotope excursions are recorded,potentially decoupled from global signals.To improve our understanding on the type of information recorded by these excursions,we investigate the pairedδ^13Ccarb andδ^13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior:the basal Bambui Group.This succession represents a 1~(st)-order sedimentary sequence and records two majorδ^13Ccarb excursions in its two lowermost lower-rank sequences.The basal cap carbonate interval at the base of the first sequence,deposited when the basin was connected to the ocean,hosts antithetical negative and positive excursions forδ^13Ccarb andδ^13Corg,respectively,resulting inΔ^13C values lower than 25‰.From the top of the basal sequence upwards,an extremely positiveδ^13Ccarb excursion is coupled toδ^13Corg,reaching values of+14‰and-14‰,respectively.This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambui Group that occurs with only minor changes inΔ^13C values,suggesting change in the DIC isotope composition.We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles.This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis,favored by the basin restriction.The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere,resulting in a^13C-enriched DIC influenced by methanogenic CO2.Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere,potentially affecting both the global carbon cycle and the climate.  相似文献   

13.
Although oil cracking has been documented as one of the important sources of gas in many overmature marine sedimentary basins, the chemical and carbon isotopic signatures of gases of this origin are still open to question. In this study a Cambrian crude oil from the central Tarim basin, along with its main separated fractions (saturates, aromatics and asphaltenes), were pyrolyzed in sealed gold tubes to investigate how generated gases vary in chemical and carbon isotopic composition and how this variation would influence the genetic interpretation of oil cracking gas. The results indicate that the gases from cracking of aromatics and asphaltenes are much drier and more enriched in 13C than the gases from the cracking of saturates and crude oil at the same level of thermal maturity. In the experimental run of 20 °C/h, the dryness index of the gases (defined as the volume percentage of C1 in C1–5) from the cracking of saturates ranges from 26.2–90.6% with the methane carbon isotope change ranging from −54.8‰ to −35.5‰, whereas the dryness index is never lower than 60.6% for the gases from the cracking of aromatics with methane carbon isotope ranging from −39.9‰ to −32.2‰. Correspondingly, experimental data for the four samples plot in different areas in diagrams designed to distinguish oil cracking gas from kerogen cracking gas, such as ln(C2/C3) vs. δ13C2δ13C3 and δ13C1 vs. δ13C2δ13C3, indicating compositional variability of crude oil could assert an important influence in these diagrams. Therefore it is prudent to bring other geological constraints into consideration to avoid misinterpretation.The kinetic parameters for the bulk generation of C1–5 gas and the methane carbon isotope fractionation extrapolated to geological conditions of 2 °C/Ma and an initial temperature of 50 °C show that the temperatures of C1–5 gas generation from the aromatics and asphaltenes are lower than those from the saturates and crude oil due to their lower activation energies and frequency factors. Generation of C1–5 gases from the aromatics is modeled to be initiated about 122 °C whereas the initiation temperature for the saturates sample is 176 °C. Below 189 °C (EasyRo = 1.8%), the yields of C1–5 gases follow the order: aromatics > asphaltenes > crude oil > saturates. At similar thermal maturity levels, the methane carbon isotopic compositions are significantly different for the four samples, with an order of 13C enrichment: aromatics > asphaltenes > crude oil > saturates, however the difference in methane carbon isotopes becomes smaller with increasing temperature. This indicates that methane carbon isotopic values can be significantly different for gases cracked from oils that are compositionally diverse, especially in the early stage of methane generation.  相似文献   

14.
《Organic Geochemistry》2012,42(12):1269-1276
This study sought to characterize hydrogen isotopic fractionation during biosynthesis of leaf wax n-alkanes in succulent plants capable of crassulacean acid metabolism (CAM). The metabolic and physiological features of CAM represent crucial strategies for survival in hot and dry climates and have been hypothesized to impact hydrogen isotope fractionation. We measured the stable carbon and hydrogen isotopic compositions (δ13C and δD, respectively) of individual n-alkanes in 20 species of succulent plants from a global collection of the Huntington Botanical Gardens, San Marino, California. Greenhouse conditions and irrigation with water of constant δD value enabled determination of interspecies differences in net D/H fractionation between source water and leaf wax products. Carbon isotope ratios provide constraints on the extent of CAM vs. C3 photosynthesis and indicate a wide range of CAM use, with δ13C values ranging from −33.01‰ to −18.54‰ (C27–C33 n-alkanes) and −26.66‰ to −17.64‰ (bulk tissue). Despite the controlled growth environment, we observed ca. 90‰ interspecies range in δD values from −193‰ to −107‰. A positive correlation between δ13Cbulk and δDC31 values with R2 = 0.60 (δ13CC31 and δDC31 values with R2 = 0.41) implicates a metabolic isotope effect as the dominant cause of interspecies variation in the hydrogen isotopic composition of leaf wax n-alkanes in CAM-intermediate plants.  相似文献   

15.
《Applied Geochemistry》2005,20(11):2017-2037
The Tertiary Thrace Basin located in NW Turkey comprises 9 km of clastic-sedimentary column ranging in age from Early Eocene to Recent in age. Fifteen natural gas and 10 associated condensate samples collected from the 11 different gas fields along the NW–SE extending zone of the northern portion of the basin were evaluated on the basis of their chemical and individual C isotopic compositions. For the purpose of the study, the genesis of CH4, thermogenic C2+ gases, and associated condensates were evaluated separately.Methane appears to have 3 origins: Group-1 CH4 is bacteriogenic (Calculated δ13CC1–C = −61.48‰; Silivri Field) and found in Oligocene reservoirs and mixed with the thermogenic Group-2 CH4. They probably formed in the Upper Oligocene coal and shales deposited in a marshy-swamp environment of fluvio-deltaic settings. Group-2 (δ13CC1–C = −35.80‰; Hamitabat Field) and Group-3 (δ13C1–C = −49.10‰; Değirmenköy Field) methanes are thermogenic and share the same origin with the Group-2 and Group-3 C2+ gases. The Group-2 C2+ gases include 63% of the gas fields. They are produced from both Eocene (overwhelmingly) and Oligocene reservoirs. These gases were almost certainly generated from isotopically heavy terrestrial kerogen (δ13C = −21‰) present in the Eocene deltaic Hamitabat shales. The Group-3 C2+ gases, produced from one field, were generated from isotopically light marine kerogen (δ13C = −29‰). Lower Oligoce ne Mezardere shales deposited in pro-deltaic settings are believed to be the source of these gases.The bulk and individual n-alkane isotopic relationships between the rock extracts, gases, condensates and oils from the basin differentiated two Groups of condensates, which can be genetically linked to the Group-2 and -3 thermogenic C2+ gases. However, it is crucial to note that condensates do not necessarily correlate to their associated gases.Maturity assessments on the Group-1 and -2 thermogenic gases based on their estimated initial kerogen isotope values (δ13C = −21‰; −29‰) and on the biomarkers present in the associated condensates reveal that all the hydrocarbons including gases, condensates and oils are the products of primary cracking at the early mature st age (Req = 0.55–0.81%). It is demonstrated that the open-system source conditions required for such an early-mature hydrocarbon expulsion exist and are supported by fault systems of the basin.  相似文献   

16.
Detailed knowledge of the extent of post-genetic modifications affecting shallow submarine hydrocarbons fueled from the deep subsurface is fundamental for evaluating source and reservoir properties. We investigated gases from a submarine high-flux seepage site in the anoxic Eastern Black Sea in order to elucidate molecular and isotopic alterations of low-molecular-weight hydrocarbons (LMWHC) associated with upward migration through the sediment and precipitation of shallow gas hydrates. For this, near-surface sediment pressure cores and free gas venting from the seafloor were collected using autoclave technology at the Batumi seep area at 845 m water depth within the gas hydrate stability zone.Vent gas, gas from pressure core degassing, and from hydrate dissociation were strongly dominated by methane (> 99.85 mol.% of ∑[C1–C4, CO2]). Molecular ratios of LMWHC (C1/[C2 + C3] > 1000) and stable isotopic compositions of methane (δ13C = ? 53.5‰ V-PDB; D/H around ? 175‰ SMOW) indicated predominant microbial methane formation. C1/C2+ ratios and stable isotopic compositions of LMWHC distinguished three gas types prevailing in the seepage area. Vent gas discharged into bottom waters was depleted in methane by > 0.03 mol.% (∑[C1–C4, CO2]) relative to the other gas types and the virtual lack of 14C–CH4 indicated a negligible input of methane from degradation of fresh organic matter. Of all gas types analyzed, vent gas was least affected by molecular fractionation, thus, its origin from the deep subsurface rather than from decomposing hydrates in near-surface sediments is likely.As a result of the anaerobic oxidation of methane, LMWHC in pressure cores in top sediments included smaller methane fractions [0.03 mol.% ∑(C1–C4, CO2)] than gas released from pressure cores of more deeply buried sediments, where the fraction of methane was maximal due to its preferential incorporation in hydrate lattices. No indications for stable carbon isotopic fractionations of methane during hydrate crystallization from vent gas were found. Enrichments of 14C–CH4 (1.4 pMC) in short cores relative to lower abundances (max. 0.6 pMC) in gas from long cores and gas hydrates substantiates recent methanogenesis utilizing modern organic matter deposited in top sediments of this high-flux hydrocarbon seep area.  相似文献   

17.
A suite of natural gases from the northern Songliao Basin in NE China were characterized for their molecular and carbon isotopic composition. Gases from shallow reservoirs display clear geochemical evidence of alteration by biodegradation, with very high dryness (C1/C2+ > 100), high C2/C3 and i-C4/n-C4 ratios, high nitrogen content and variable carbon dioxide content. Isotopic values show wide range variations (δ13CCH4 from −79.5‰ to −45.0‰, δ13CC2H6 from −53.7‰ to −32.2‰, δ13CC3H8 from −36.5‰ to −20.1‰, δ13CnC4H10 from −32.7‰ to −24.5‰, and δ13CCO2 from −21.6‰ to +10.5‰). A variety of genetic types can be recognized on the basis of chemical and isotopic composition together with their geological occurrence. Secondary microbial gas generation was masked by primary microbial gas and the mixing of newly generated methane with thermogenic methane already in place in the reservoir can cause very complicated isotopic signatures. System openness also was considered for shallow biodegraded gas accumulations. Gases from the Daqing Anticline are relatively wet with 13C enriched methane and 13C depleted CO2, representing typically thermogenic origin. Gases within the Longhupao-Da’an Terrace have variable dryness, 13C enriched methane and variable δ13C of CO2, suggesting dominant thermogenic origin and minor secondary microbial methane augment. The Puqian-Ao’nan Uplift contains relatively dry gas with 13C depleted methane and 13C enriched CO2, typical for secondary microbial gas with a minor part of thermogenic methane. Gas accumulations in the Western Slope are very dry with low carbon dioxide concentrations. Some gases contain 13C depleted methane, ethane and propane, indicating low maturity/primary microbial origin. Recognition of varying genetic gas types in the Songliao Basin helps explain the observed dominance of gas in the shallow reservoir and could serve as an analogue for other similar shallow gas systems.  相似文献   

18.
The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ 13C1 and δ13C2 values ranging mainly from ?35‰ to ?30‰ and ?27‰ to ?22‰, respectively, high δ13C excursions (round 10) between ethane and methane and predominant methane in hydrocarbon gases with most C1/(C1-C5) ratios in excess of 0.95, suggesting an origin of coal-derived gas. The gases exhibit different carbon isotopic profiles for C1-C4 alkanes with those of the natural gases found in the Lower Paleozoic of this basin, and believed to be originated from Carboniferous-Permian coal measures. The occurrence of regionally pervasive gas accumulation is distinct in the gently southward-dipping Shanbei slope of the central basin. It is noted that molecular and isotopic composition changes of the gases in various gas reservoirs are associated with the thermal maturities of gas source rocks. The abundances and δ13C values of methane generally decline northwards and from the basin center to its margins, and the effects of hydrocarbon migration on compositional modification seem insignificant. However, C isotopes of autogenetic calcites in the vertical and lateral section of reservoirs show a regular variation, and are as a whole depleted upwards and towards basin margins. Combination with gas maturity gradient, the analysis could be considered to be a useful tool for gas migration.  相似文献   

19.
The main purpose of this study is to model the δ13C values of methane derived from coal by combining kinetic-simulating experiment with the gas chromatography-isotope ratio mass spectrum (GC-IRMS) analysis. The stable carbon isotopic variation of methane in pyrolysates with heating temperature indicates that the assumptions for both a constant kinetic isotope effect (α) and a uniform initial isotopic composition (δ13Co) are impractical for explaining the carbon isotopic fractionation during coalification. For purposes of simplification, two approaches are used in this paper to deal with the heterogeneity of terrestrial organic matter. One is that, assuming a uniform initial isotopic composition (i.e., δ13Ci, o=δ13Co) for all methane-generating precursors in coal, the isotopic variation of methane is fitted by adjusting ΔEa, i (Ea13C, iEa12C, i) for each hypothetical reaction. The other is that, assuming a constant kinetic isotope effect during the whole gas formation, that is all ΔEa, i values are identical, the modeling of methane isotopic composition is achieved by changing the 13CH4 generation potential of each reaction (fi, 13C), namely, by adjusting the initial δ13C value (δ13Ci, o) for each methane-generating precursor. Results of the kinetic calculation shows that the two simulating methods can yield a similar result at a geological heating rate of 2 °C/My, which further demonstrates that those natural gases with methane δ13C value being approximately −36‰ are possibly sourced from the upper Triassic coal measure strata in the Northwestern Sichuan Basin.  相似文献   

20.
Marine gas hydrates, one of the largest methane reservoirs on Earth, may greatly affect the deep sea sedimentary environment and biogeochemistry; however, the carbon geochemistry in gas hydrate-bearing sediments is poorly understood. In this study, we investigated the carbon variables in sediment core 973-3 from the southwestern Taiwan Basin in the South China Sea to understand the effect of environmental factors and archaeal communities on carbon geochemistry. The carbon profiles suggest the methanogenesis with the incerase of dissolved inorganic carbon(DIC) and high total organic carbon(TOC)(mean = 0.46%) originated from terrigenous organic matter(mean δ~(13)C_(TOC) value of-23.6‰) driven by the abundant methanogen ‘Methanosaeta and Methanomicrobiales'. The active anaerobic oxidation of methane is characterized by the increase of DIC and inorganic carbon(IC), and the depleted δ~(13)C_(IC), coupled with the increase of TOC and the decrease of δ~(13)C_(TOC) values owing to the methanotroph ‘Methanosarcinales/ANME' in 430–840 cm. Environmental factors and archaeal communities in core 973-3 are significantly correlated to carbon variables owing to methane production and oxidation. Our results indicate that the carbon geochemical characteristics are obviously responding to the formation and decomposition of gas hydrates. Furthermore, pH, Eh and grain size, and Methanosaeta greatly affect the carbon geochemistry in gas hydrate-associated sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号