首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
New paleomagnetic data relative to Upper Cretaceous, Neogene and Quaternary volcanic rocks from eastern Sicily definitively indicate that Sicily is a part of the African plate, which collided with the European continental plate in Middle Miocene times. These data and the tectonic evolution of Sicily as inferred from the nature, age and distribution of volcanic products, are broadly consistent with the motions of Africa relative to Europe since the Upper Trias. During the Mesozoic, eastern Sicily was affected by extensional tectonics with associated alkali basaltic volcanism, and oceanic crust was produced in the meantime between the diverging African and European plates. Near the end of Mesozoic times the two plates started to converge with consequent consumption of oceanic crust. Different times of oceanic plate consumption along the Sicily-Calabria section of the plate boundary are suggested by the occurence of andesitic volcanism of different ages. The tectonic significance of late Tertiary to present basaltic activity in eastern Sicily is also discussed.  相似文献   

2.
Miocene intra‐arc rifting associated with the opening of the Japan Sea formed grabens in several areas in Southwest (SW) Japan, but the extensional tectonics of the arc are still not well understood. In this study, we first document the tectonostratigraphy of the Hokutan Group in the northwestern part of the Kinki district, and demonstrate the termination of extensional tectonics at ca 16.5 Ma, as inferred from grabens in the lower part of the group being unconformably overlain by sediments of the upper part. Second, we review early Miocene grabens in SW Japan to suggest that intra‐arc rifting was abandoned at ca 16 Ma, essentially simultaneously with the end of rotation of the SW Japan arc as evidenced by paleomagnetic studies. The lesser numbers of grabens and reduced thicknesses of graben fills suggest that extensional deformation of the SW Japan arc was significantly weaker than that of the Northeast (NE) Japan arc, which was broken into blocks, indicating various degrees of paleomagnetic rotation within NE Japan. The weak deformation has allowed paleomagnetic studies to infer the coherent rotation of the SW Japan arc.  相似文献   

3.
New paleomagnetic results from Neogene sedimentary sequences from the Betic chain (Spain) are here presented. Sedimentary basins located in different areas were selected in order to obtain paleomagnetic data from structural domains that experienced different tectonic evolution during the Neogene. Whereas no rotations have been evidenced in the Late Tortonian sediments in the Guadalquivir foreland basin, clockwise vertical axis rotations have been measured in sedimentary basins located in the central part of the Betics: the Aquitanian to Messinian sediments in the Alcalà la Real basin and the Tortonian and Messinian sediments in the Granada basin. Moreover, counterclockwise vertical axis rotations, associated to left lateral strike-slip faults have been locally measured from sedimetary basins in the eastern Betics: the Middle Miocene to Lower Pliocene sites from the Lorca and Vera basins and, locally, the Tortonian units of the Huercal-Overa basin. Our results show that, conversely from what was believed up to now, paleomagnetic rotations continued in the Betics after Late Miocene, enhancing the role of vertical axis rotations in the recent tectonic evolution of the Gibraltar Arc.  相似文献   

4.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

5.
Paleomagnetic results are reported from three formations of late Paleozoic age from the northern Chilean Andes of the Atacama Desert. For the first time primary NRM components are resolved for Paleozoic units along the western flank of the central Andes. Pole positions are calculated for the formations, and compared with APW data for cratonic South America. These comparisons reveal that the collecting sites in the northern Domeyko and Almeida Ranges of the central Andes have undergone no paleomagnetically defined rotations or translation with respect to cratonic South America since the time of NRM acquisition, which is likely to have been in the lower parts of the Kiaman Reverse Interval. If growth of the South American lithosphere has involved accretion of exotic microplates they are either likely to be substantially older than units sampled here, or be restricted to more coastal terranes. The results, taken together with other paleomagnetic data from northern Chile and southern Peru which have showed a wide range of discordance in their declinations when compared to each other or APW data, lead to the conclusion that this region of the Andes during the Mesozoic or Cenozoic has not been affected by simple processes of clockwise oroclinal bending from Peru to Chile, nor regionally consistent patterns of block rotations.  相似文献   

6.
Masaki  Takahashi Kazuo  Saito 《Island Arc》1997,6(2):168-182
Abstract Recent paleomagnetic studies are reviewed in an effort to clarify the relationship between the intra-arc deformation of central Japan and the collision tectonics of the Izu-Bonin Arc. The cusp structure of the pre-Neogene terranes of central Japan, called the Kanto Syntaxis, suggests a collisional origin with the Izu-Bonin Arc. The paleomagnetic results and newly obtained radiometric ages of the Kanto Mountains revealed the Miocene rotational history of the east wing of the Kanto Syntaxis. More than 90° clockwise rotation of the Kanto Mountains took place after deposition of the Miocene Chichibu Basin (planktonic foraminiferal zone of N.8: 16.6–15.2 Ma). After synthesizing the paleomagnetic data of the Japanese Islands and collision tectonics of central Japan, it appears that approximately a half rotation (40–50°) probably occurred at ca 15 Ma in association with the rapid rotation of Southwest Japan. The remainder (50-40°) continued until 6 Ma, resulting in the sharp bent structure of the pre-Neogene accretionary complexes (Kanto Syntaxis). The latter rotation seems to have been caused by the collision of the Izu-Bonin Arc on the northwestward migrating Philippine Sea Plate.  相似文献   

7.
Along the Central Andes a pattern of vertical axis rotations has been paleomagnetically identified. Such rotations are counterclockwise north of Arica Deflection (∼19° S) and clockwise to the south. Different hypothesis and models have been proposed to explain the Central Andean Rotation Pattern (CARP). However, the origin of the CARP is a subject of ongoing debate. Recently, different authors have proposed the possible existence of a close correlation between the time–space distribution of deformation and the amount of registered vertical axis rotations in the Southern Central Andes. In order to further investigate such relationship, new paleomagnetic studies were carried out in Upper Oligocene–Lower Miocene rocks of the Northern Argentine Puna and the Southern Bolivian Altiplano. Our results indicate that while one of the sampled localities did not undergo significant vertical axis rotations, the other two recorded clockwise vertical axis rotations larger than 30°. These results suggest the occurrence of small-block rotations in the Southern Bolivian Altiplano–Northern Argentine Puna prior to 15 Ma, which would correspond to the local accommodation of the regional deformation field.  相似文献   

8.
Paleogene surface tectonics in Japan is not well understood because of the paucity of onshore Paleogene stratigraphic records except for those from accretionary complexes. Paralic Paleogene formations remaining in SW Japan are usually so thin that it is difficult to decipher the tectonics from them. However, the Eocene paralic sedimentary package with a thickness of kilometers indicates syn-depositional tectonic subsidence by a few kilometers in the Amakusa archipelago, west of Kyushu Island. Thus, we made a detailed geological map of the Eocene formations in an area of ~50 square kilometers in the northwestern part of the archipelago. We identified NE-SW and NW-SE trending normal faults, most of which were recognized by previous researchers, and also discovered low-angle faults. NW-SE trending ones are known to be of the Miocene. NE-SW trending and low-angle normal faults are the oldest map-scale structures in the Eocene ones. It is not obvious within the above-mentioned area whether those normal faults are accompanied by growth strata. However, the significant southeastward thickening of the Eocene formations across the Amakusa archipelago suggests that they filled a large half graben with the basin margin fault along the eastern side of the archipelago. This basin model is consistent with the N-S to NW-SE transport directions of the low-angle and NE-SW trending normal faults. Since many NE-SW to EW trending Eocene grabens were formed in the offshore regions west of Kyushu Island and in the East China Sea, the Amakusa region was probably a northeastern branch of the rift system. The geologic structures and depositional ages of the Eocene formations indicate that the Eocene extensional tectonics removed the overlying strata to some extent for the high-P/T Takahama Metamorphic Rocks which crops out to the south of our study area.  相似文献   

9.
The opening of the Japan Sea separated southwest Japan from the Eurasian continent during the Early to Middle Miocene. Since then, diverse igneous activities have occurred in relation to the subduction of the Philippine Sea Plate beneath southwest Japan. The Okinawa Trough formed in the back-arc region of the Ryukyu Arc since the Late Miocene. In the Koshikijima Islands, off the west coast of Kyushu and near the northern end of the Okinawa Trough, felsic to intermediate igneous rocks with Middle to Late Miocene radiometric ages occur as granitic intrusions and dikes. We obtained zircon U–Pb ages and whole-rock major- and trace-element compositions of Koshikijima granitic rocks to elucidate their magmagenesis. The U–Pb ages of granitic rocks in Kamikoshikijima and Shimokoshikijima and a dacite dike are about 10 Ma, suggesting that most magmatism on the Koshikijima Islands was coeval with early rifting in the Okinawa Trough. We infer that magmagenesis occurred via melting of lower crustal mafic rocks related to rifting in the Okinawa Trough based on the arc-like trace-element compositions of these I-type granites. Andesitic dikes preceded felsic igneous activity on the Koshikijima Islands, and their ages and petrochemistry will help elucidate the magmatism and tectonics in this area throughout the Miocene.  相似文献   

10.
In this paper, we present a first estimation, using the GIPSY-OASIS software, of the crustal velocity and strain rate fields in the Balearic Islands (Spain), based on continuous GPS observations from the XGAIB network spanning the period 2010–2013. The XGAIB network consists of nine permanent, widely distributed stations that have operated continuously since 2010. In this paper, we describe the XGAIB network and the CGPS data processing and present our principle results in terms of the position time series and velocities of all of the sites, which were observed for more than three and a half years. In addition, strain tensors were estimated from the velocity field to obtain the first realistic crustal deformation model of the archipelago. The strains exhibit gradual variation across the Balearic Islands, from WNW–ESE extension in the southwest (Ibiza and Formentera) to NW–SE compression in the northeast (Menorca). These results constitute an advance in our knowledge of the tectonics of the western Mediterranean region.  相似文献   

11.
Cenozoic extensional stress evolution in North China   总被引:14,自引:0,他引:14  
Since the beginning of the Cenozoic, north China has been fragmented by intensive intracontinental rifting and extensional tectonics, which resulted in the formation of two extensional domains: the graben systems around the Ordos block in the west and North China Plain in the east. How to link this Cenozoic extensional tectonics to plate kinematics has long been an issue of debate. This paper presents updated results of fault slip data sets collected in different zones in north China and addresses the changes in the direction of extensional stresses over the Cenozoic. A chronology of three successive extensions has been established and provides evidence for constraining the timing and location of either subduction-induced back-arc tectonics along the western Pacific or collision-related extrusion tectonics in Tibet. The oldest NW–SE trending extension occurred concomitantly with the early Tertiary rifting phase, which was initiated in a back-arc setting associated with westward subduction of the Pacific plate under the Asia continent. North China had been subjected, during the Miocene, to regional subsidence with widespread basalt flow, and the direction of extension changed to NE–SW to NNE–SSW, consistent with the spreading direction of the Japan Sea. The dynamic origin of this extension is poorly understood. Since the latest Miocene or earliest Pliocene, north China has been dominated by NW–SE extension resulting in the formation and development of the elongate graben systems around the rigid Ordos block. This extensional phase is accompanied by counterclockwise rotation of blocks such as Ordos, Taihangshan Massif etc., which are bounded to south by the left-lateral strike-slip Qinling fault system. The overall Pliocene-Quaternary deformation in north China accommodates an ESE-ward extrusion of the south China block relative to the Gobi-Mongolia plateau, as the consequence of late-stage India–Eurasia convergence.  相似文献   

12.
Mesozoic doming extensional tectonics of Wugongshan, South China   总被引:4,自引:0,他引:4  
Wugongshan in Jiangxi Province, China was a Mesozoic granitic dome-type extensional tectonics that is composed of metamorphic core complexes, ductile and brittle shear-deformed zones distributed around Mesozoic granites. Within it, the foliation defines an E-W elliptical shape and bears S-N stretching lineations. The axial part is located in Hongjiang-Wanlongshan area and occupied by oriented granites with coaxial symmetric shear fabrics. The southem and northern flanks, including rocks in the Anfu Basin to the south and the Pingxiang Basin to the north, display top-to-south and top-to-north motions, respectively. The ductile and brittle structures indicate a geometric and kinematic consistency. The extensional tectonics is developed on a Caledonian metamorphic basement and is unconformably covered by Late Cretaceous red beds. Isotopic ages on muscovite, biotite and whole rock by40Ar-39Ar, K-Ar and Rb-Sr suggest that the Wugongshan extensional doming began from the Triassic and ended in the Late Cretaceous. A geodynamic model is discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 49632080, 49572141)  相似文献   

13.
The purpose of this paper is to discuss the poly-phase salt tectonics and its relation to the hydrocarbon accumulation of the Tarim superimposed basin. Several salt sequences are developed in the Tarim basin, they are: (1) the Mid-Early Cambrian salt sequence, mainly distributed in the west part of the north Tarim uplift and Keping uplift; (2) the Early Carboniferous salt sequence, mainly distributed in the south slope of the north Tarim uplift; (3) the Paleogene salt sequence, mainly distributed in the mid-west part of the Kuqa foreland fold belt and north Tarim uplift; and (4) the Miocene salt sequence, mainly distributed in the east part of the Kuqa foreland fold belt. The salt sequences deposited in the tectonically calm scenario, while the salt layers deformed during the period of intense tectonism. Although the salt sequences are characteristic of plastic flow, the differences of salt deformation styles exist in the different salt sequences because of the different deformation mechanism. It is attractive that the distribution of the large oil-gas fields or pools has a bearing upon the salt sequences and salt structures, such as the Tahe oilfield related to the Lower Carboniferous salt sequence and laterally facies changed mudstone, the Kela No.2 gas field to the Paleogene salt structures, and the Dina gas field to the Miocene salt structures. It is indicated that the large-scale hydrocarbon accumulation is controlled by the poly-phase salt sequences and structures. The deep analysis of the poly-phase salt tectonics is helpful to understanding the characteristics of the structural deformation and oil-gas accumulation of the Tarim basin.  相似文献   

14.
柴达木盆地沉积地层记载着青藏高原东北部的构造演化信息.对该盆地路乐河地区上中生界—新生界地层系统采样,获得千余块定向岩心样品.岩石磁学研究表明样品中的磁性矿物主要为赤铁矿和磁铁矿;磁组构研究表明为初始沉积磁组构特征.磁组构特征指示了自中侏罗统大煤沟组(J2d)至早中新统下油砂山组(N12y)7个地层单位沉积时期,古水流方向共经历了4次阶段性的变化,表明柴达木块体相应地发生了4次旋转.在中—晚侏罗世块体逆时针旋转约22°;至早白垩世,块体又顺时针旋转约65°;在65.5~32 Ma期间块体旋转方向再次改变,逆时针旋转约63°;到32~13Ma阶段块体又发生约50°的顺时针旋转.柴达木块体的旋转及其方向的转换,可能与其南的羌塘块体、拉萨块体和印度板块阶段性北向碰撞挤压紧密相关.拉张环境与挤压环境的多次转换可能与中特提斯的关闭、新特提斯的张开和闭合、高原快速隆升后其边部松弛相联系.  相似文献   

15.
The subduction of “hot” Shikoku Basin and the mantle upwelling related to the Japan Sea opening have induced extensive magmatism during the middle Miocene on both the back-arc and island-arc sides of southwest Japan. The Goto Islands are located on the back-arc side of northwestern Kyushu, and middle Miocene granitic rocks and associated volcanic, hypabyssal, and gabbroic rocks are exposed. The igneous rocks at Tannayama on Nakadori-jima in the Goto Islands consist of gabbronorite, granite, granite porphyry, diorite porphyry, andesite, and rhyolite. We performed detailed geological mapping at a 1:10 000 scale, as well as petrographical and geochemical analyses. We also determined the zircon U–Pb age dating of the igneous rocks from Tannayama together with a granitic rock in Yagatamesaki. The zircon U–Pb ages of the Tannayama igneous rocks show the crystallization ages of 14.7 Ma ± 0.3 Ma (gabbronorite), 15.9 Ma ± 0.5 Ma (granite), 15.4 Ma ± 0.9 Ma (granite porphyry), and 15.1 Ma ± 2.1 Ma (rhyolite). Zircons from the Yagatamesaki granitic rock yield 14.5 Ma ± 0.7 Ma. Considering field relationships, new zircon data indicate that the Tannayama granite formed at ~16–15 Ma, and the gabbronorite, granite porphyry, diorite porphyry, andesite, and subsequently rhyolite formed at 15–14 Ma, which overlaps a plutonic activity of the Yagatamesaki. The geochemical characteristics of the Tannayama igneous rocks are similar to those of the tholeiitic basalts and dacites of Hirado, and the granitic rocks of Tsushima in northwestern Kyushu. This suggests that the Tannayama igneous rocks can be correlated petrogenetically with the igneous rocks in those areas, with all of them generated by the upwelling of hot mantle diapirs during crustal thinning in an extensional environment during the middle Miocene.  相似文献   

16.
We present an aeromagnetic survey of the Gulf of Valencia and the Balearic Islands (western Mediterranean). A total field anomaly map and a map of the anomalies reduced to the pole have been obtained. From these maps, it is apparent that there are two regions of opposing magnetic style: the Balearic archipelago which is magnetically very smooth, and the north Balearic basin (or Gulf of Valencia) where anomalies are in places very intense. From a comparison of these two domains, we conclude that the Valencian basin was created during an extensional tectonic phase.  相似文献   

17.
Low-field anisotropy of magnetic susceptibility (AMS) analyses were performed on 532 samples collected in 36 (mostly lower Pliocene to lower Pleistocene) marine clay sites from the Crotone basin, a fore-arc basin located on top of the external Calabrian accretionary wedge. The Crotone basin formed since mid-late Miocene under a predominant extensional tectonic regime, but it was influenced thereafter by complex interactions with NW–SE left-lateral strike-faults bounding the basin, which also yielded post-1.2 Ma ∼30° counterclockwise block rotations. The basin is filled by continental to marine sediments yielding one of the thickest and best-exposed Neogene succession available worldwide. The deep-marine facies – represented by blue-grey marly clays gave the best results, as they both preserved a clear magnetic fabric, and provided accurate chronology based on previously published magnetostratigraphy and calcareous plankton (i.e. foraminifers and nannofossils) biostratigraphy. Magnetic susceptibility range and rock magnetic analyses both indicate that AMS reflects paramagnetic clay matrix crystal arrangement. The fabric is predominantly oblate to triaxial, the anisotropy degree low (<1.06), and the magnetic foliation mostly subparallel to bedding. Magnetic lineation is defined in 30 out of 36 sites (where the e12 angle is <35°). By also considering local structural analysis data, we find that magnetic fabric was generally acquired during the first tectonic phases occurring after sediment deposition, thus validating its use as temporally dependent strain proxy. Although most of the magnetic lineations trend NW–SE and are orthogonal to normal faults (as observed elsewhere in Calabria), few NE–SW compressive lineations show that the Neogene extensional regime of the Crotone basin was punctuated by compressive episodes. Finally, compressive lineations (prolate magnetic fabric) documented along the strike-slip fault bounding the basin to the south support the significance of Pleistocene strike-slip tectonics. Thus the Crotone basin shows a markedly different tectonics with respect to other internal and western basins of Calabria, as it yields a magnetic fabric still dominated by extensional tectonics but also revealing arc-normal shortening episodes and recent strike-slip fault activity. The tectonics documented in the Crotone basin is compatible with a continuous upper crustal structural reorganization occurring during the SE-migration of the Calabria terrane above the Ionian subduction system.  相似文献   

18.
Although paleomagnetic study of the Early Paleozoic for the North China Block (NCB) has witnessed rapid progress since the 1980s, significant difference in the results can be found from the widespread areas in North China. Besides the paleomagnetic techniques used in the laboratories, the difference of these Paleozoic poles could also be due to the early and late Mesozoic remagnetization in the eastern part of China. It is therefore necessary to carry out systematic paleomagnetic and rock magnetic studies for the Early Paleozoic rocks in the NCB. The remagnetizarion re-sults from the northwestern part of Henan Province are reported, and related geological implications are discussed.  相似文献   

19.
We investigate the geometry and kinematics of the faults exposed in basement rocks along the Strouma River in SW Bulgaria as well as the sequence of faulting events in order to place constraints on the Cenozoic kinematic evolution of this structurally complex domain. In order to decipher the successive stress fields that prevailed during the tectonic history, we additionally carried out an analysis of mesoscale striated faults in terms of paleostress with a novel approach. This approach is based on the P–T axes distribution of the fault-slip data, and separates the fault-slip data into different groups which are characterized by kinematic compatibility, i.e., their P and T axes have similar orientations. From these fault groups, stress tensors are resolved and in case these stress tensors define similar stress regimes (i.e., the orientations of the stress axes and the stress shape ratios are similar) then the fault groups are further unified. The merged fault groups after being filled out with those fault-slip data that have not been incorporated into the above described grouping, but which present similar geometric and kinematic features are used for defining the final stress regimes. In addition, the sequence of faulting events was constrained by available tectonostratigraphic data.Five faulting events named D1, D2, D3, D4 and D5 are distinguished since the Late Oligocene. D1 is a pure compression stress regime with σ1 stress axis trending NNE-SSW that mainly activated the WNW-ESE to ENE-WSW faults as reverse to oblique reverse and the NNW-SSE striking as right-lateral oblique contractional faults during the Latest Oligocene-Earliest Miocene. D2 is a strike-slip − transpression stress regime with σ1 stress axis trending NNE-SSW that mainly activated the NNW-SSE to N-S striking as right-lateral strike-slip faults and the ENE-WSW striking faults as left-lateral strike-slip ones during the Early-Middle Miocene. D3 extensional event is associated with a NW-SE to WNW-ESE extension causing the activation of mainly low-angle normal faults of NE-SW strike and NNE-SSW to NNW-SSE striking high-angle normal faults. D4 is an extensional event dated from Late Miocene to Late Pliocene. It activated NNW-SSE to NW-SE faults as normal faults and E-W to WNW-ESE faults as right-lateral oblique extensional faults. The latest D5 event is an N-S extensional stress regime that dominates the wider area of SW Bulgaria in Quaternary times. It mainly activated faults that generally strike E-W (ENE-WSW and WNW-ESE) normal faults, along which fault-bounded basins developed. The D1 and D2 events are interpreted as two progressive stages of transpressional tectonics related to the late stages of collision between Apulia and Eurasia plates. These processes gave rise to the lateral extrusion of the Rhodope and Balkan regions toward the SE along the Strouma Lineament. The D3 event is attributed to the latest stage of this collision, and represents the relaxation of the overthickened crust along the direction of the lateral extrusion. The D4 and D5 events are interpreted as post-orogenic extensional events related to the retreat of the Hellenic subduction zone since the Late Miocene and to the widespread back-arc Aegean extension still prevailing today.  相似文献   

20.
Summary A reconnaissance paleomagnetic study of Hispaniola shows that three igneous units in the Dominican Republic possess meaningful directions of magnetism. A Late Cretaceous tonalite, an Eocene pyroxene diorite and a Miocene andesite porphyry have been investigated. The rock material studied is fresh, and has not been affected by secondary oxidation except in the case of the andesite which is occasionally weathered and reveals some hydrothermal alteration. Alternating field and thermal demagnetization result in removal of viscous remanence in some samples, while others reveal a good stability of NRM and little change in direction. The results disclose directions of magnetization substantially different from that of the present earth's field in Hispaniola and from those obtained from contemporaneous rocks of North America. They yield paleomagnetic poles at 23.1° N, 144.9° W for the Cretaceous tonalite and at 17.4° N, 138.0° W for the Eocene diorite, the positions of which are not significantly different from each other, suggesting no change of geomagnetic field direction during the two epochs. These poles have generally similar positions to those obtained from Late Cretaceous rocks on Jamaica and Puerto Rico. The Miocene data fall into two groups, one having a direction corresponding to a pole closely coinciding with the Miocene North American pole and the other giving a paleomagnetic pole at 68.3° N, 151.9° W coinciding with the Miocene pole for Jamaica. Paleotectonic interpretation of the results suggests that like other Greater Antilles, Hispaniola has been subject to large anticlockwise rotation since Late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号