首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale disturbances in the ionospheric plasma, caused by the spacecraft launches from the Baikonur site, have been analyzed based on the incoherent scatter radar measurements. The altitude-time dependences of the main plasma parameters (electron density and electron and ion temperatures at altitudes of ~100–600 km) have been analyzed. It has been indicated that spacecraft launches and flights are accompanied by the generation of wave-like disturbances in all considered parameters. It has been obtained that the relative amplitudes of these wave-like disturbances were usually 0.03–0.10, and the variation period was 20–60 min. The variations were shifted in phase relative to each other. The propagation velocities of wave-like disturbances were ~0.5–0.6 and 1.5–2 km/s. The up-to-date methods of spectral analysis, including the wavelet analysis, were used to estimate the parameters of the wave-like disturbances.  相似文献   

2.
The observations of the effects of the partial (about 77%) solar eclipse (SE) of March 29, 2006, in the ionospheric plasma are presented. The experimental data were obtained using the Kharkov incoherent scatter radar. At the moment of the maximum phase of SE, a decrease in the critical frequency of the ionospheric F 2 layer by 18%, a depletion of the density in the F 2 layer maximum by 33%, and an increase in the maximum height z m by 30 km were observed. The solar eclipse caused a decrease in the electron and ion temperatures by 150–300 and 100–200 K, respectively, within the height range 210–490 km. An increase in the relative density of the hydrogen ions during the maximum phase of SE by 20–25% within the height range 900–1200 km is detected. Calculations of the parameters of dynamical processes and thermal regime of the ionospheric plasma during SE are performed.  相似文献   

3.
The measurements of an increase in the total electron content (TEC) of the ionosphere during solar flares, obtained based on the GPS data, indicated that up to 30% of TEC increments corresponded to the ionospheric regions above 300 km altitude in some cases, and TEC increased mainly below altitudes of 300 km in other cases. The theoretical model of the ionosphere and plasmasphere was used to study the obtained effects. The altitude-time variations in the charged particle density in the ionospheric region from 100 to 1000 km were used depending on the solar flare spectrum. An analysis of the modeling results indicated that an intensification of the flare UV emission in the 55–65 and 85–95 nm spectral ranges results in a pronounced increase in the electron density in the topside ionosphere (above 300 km). The experimental dependences of the ionospheric TEC response amplitude on the localization and peak power of flares on the Sun in the X-ray range, obtained based on the GPS data, are also presented in the work.  相似文献   

4.
Results of the observations of the ionospheric effects of two solar flares in April 2004 performed using partial reflections are presented. The studies were carried out at the measuring facilities located in different latitudinal regions: at Vasil’sursk station in the Nizhni Novgorod region and at Tumannyi station in the Murmansk region. The quantitative estimates of the electron density in the polar and midlatitude D region under quiet conditions and during solar flares were obtained. The correlation between rapid variations in electron concentration at heights of about 80 km at these stations was found and it was shown that during solar flares the electron density at heights of 60–70 km corresponds to the intensity of the X-ray flux in the range of 0.5–3 Å, which points to the action of the linear law of recombination in the ionospheric D region.  相似文献   

5.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

6.
The amplitudes and relative amplitudes of electron density wave-like disturbances (WDs) with periods of 30–120 min at altitudes of 125–500 km (100–1000 km in individual experiments) under the conditions of a quiet ionosphere during magnetic and ionospheric storms and two solar eclipses are analyzed. The observations of the WD amplitudes and their altitude variations corresponded to the data of theoretical simulation in a number of cases. On the whole, the altitude variations in the WD amplitudes are more complicated than such variations derived from a simple theoretical model presented here.  相似文献   

7.
The results of observations of the solar eclipse ionospheric effects on March 29, 2006, are presented. The observations were conducted using the partial reflection method near Nizhni Novgorod and the vertical sounding method at the automatic ionospheric station near Murmansk. It has been obtained that the electron density at altitudes of 77 and 91 km decreases by a factor of more than 4; in this case the response of the ionosphere at an altitude of 91 km lags behind the eclipse maximum phase on the Earth by approximately 20 min. It has been established that the eclipse in the E and F1 regions of the polar ionosphere causes a change in the electron density by 15–20%. The delay time of this effect varies from 12 to 24 min depending on the altitude. It has been registered that the reflection virtual altitude at altitudes of the ionospheric F region increases in Murmansk and Nizhni Novgorod.  相似文献   

8.
The results of the observations of aperiodic and quasi-periodic disturbances in E and F1 ionospheric layers and air temperature variations in the surface atmosphere on the day of the solar eclipse and control days are presented. The ionospheric processes were monitored by vertical sounding Doppler radar. The measurements showed that, near the time of the maximum coverage of the solar disk, the greatest decrease in the density of electrons in the layers E and F1 was ~27%, which is close to the calculated value (25%). The solar eclipse was accompanied by the generation of traveling ionospheric disturbances with a period of 8–12 min and a relative amplitude of electron density variations of ~0.6–1.5%. Because of the haze in the surface atmosphere, its temperature, which was monitored at observation points at a distance of 50–60 km from each other did not exceed 1°C near the time of the maximum eclipse magnitude.  相似文献   

9.
激发态氮分子N*2在电离层F区中起着重要的作用,它使F区占主导地位的O+离子的损失率增大,从而使该区的电子浓度减少. 本文利用理论电离层数值模型,通过考虑与不考虑N*2的作用,对包括1990年6月、1997年5月、1998年5月以及2000年4月磁暴事件在内的时间区间的电离层响应情形进行模拟研究,并与实测结果进行对比. 结果表明,N*2对电离层电子浓度的影响在太阳活动高年非常明显,在太阳活动低年虽有些影响,但效果并不明显,其程度远不如高年. 在太阳活动高年,不仅是磁暴期间,在较宁静期间也必须考虑N*2的影响. 而且,在考虑N*2的作用时,还与激发态振动温度Tν有关,在采用Tν=Tn(其中Tn为背景中性大气的温度)的简化处理时,所得结果与观测结果的符合程度不如对Tν进行精确计算时所得的结果好. 模拟结果还表明,太阳活动高年,N*2作用的结果主要是使150km高度以上的F区电离层电子浓度减少,而对150km以下高度的电离层电子浓度则影响不大. 另外,N*2基本不影响F2层峰高hmF2的值.  相似文献   

10.
Results of the spectral measurements of ionospheric noise in the meter band are presented. The events lasting several milliseconds (the emission maximum of which drifts upward (in frequency), is reflected (stops), and drifts downward) have been distinguished. Moreover, multiple harmonics are observed. The frequency-time structure of such events have been considered from the viewpoint of registration of the electron beam synchrotron emission harmonics at ionospheric altitudes in the geomagnetic field. The model calculations of the frequency-time structure of ionospheric radio noise bursts drifting in frequency have been performed taking into account the measurement conditions. It has been indicated that the model electron radio noise bursts agree with the measured bursts reflecting from the ionosphere at altitudes of 100–180 km. The model of the monoenergetic beam of electrons precipitating from the radiation belt (L ~ 2.0–2.8) into the ionosphere has been proposed.  相似文献   

11.
本文基于IRI模型、地面数字测高仪和GNSS TEC数据,提出了一种利用经验正交函数(Empirical Orthogonal Function,简称EOF)估算顶部电离层电子密度剖面的方法,并将其应用于美国Millstone Hill测高仪和GNSS数据以估算顶部电离层电子密度剖面.通过将估算的临界频率、峰值高度、400km以上电子密度分别与测高仪实测临界频率、测高仪实测峰值高度以及非相干散射雷达实测400km以上电子密度作对比以对方法的有效性进行验证.统计结果显示估算临界频率、峰值高度与测高仪实测数据基本一致,400km以上估算电子密度相较于非相干散射雷达实测的绝对误差平均值仅是测高仪推算400km以上电子密度绝对误差平均值的一半左右.所以本文提出的方法可以更加精确地估算顶部电离层电子密度.  相似文献   

12.
The intensity of large-scale traveling ionospheric disturbances (LS TIDs), registered according to measurements of the total electron content (TEC) during the magnetic storms of October 29–31, 2003, and November 7–11, 2004, has been compared with that of local electron density disturbances. The data of TEC measurements at ground-based GPS receivers located near the ionospheric stations and the corresponding values of the critical frequency of the ionospheric F region (foF2) were used for this purpose. The variations in TEC and foF2 were similar for all events mentioned above. The previous assumption that the region of thickness 150–200 km in the vicinity of the ionospheric F region mainly contributes to TEC modulation was confirmed for the cases when the electron density disturbance at an F region maximum was not more than 50%. However, this region probably becomes more extensive in vertical when the electron density disturbance in the vicinity of the ionospheric F region is about 85%.  相似文献   

13.
模型,计算了雷暴云电荷突然对地放电后QE场大小 在0~90km高度上的分布. 对200C的正电荷对地放电后的计算表明,在放电1ms后,在65~78km的区域内,QE场大于大气的雪崩电场,而0.5s后,该电场迅速衰减到很低的水平. 在电 离层高度上,由于电子的热化时标和电离时标极短,在QE场的作用下,夜间局部低电离层会 有比较大的响应. 对Boltzmann方程数值求解的结果表明,在某些高度上,电子分布函数有 明显的高能尾巴;在63~83km的高度上,电子平均能量为3eV<ε<6eV;计算的电子数 密度 的峰值扰动表明,在65~78km的高度上,电子的数密度增加,最大的电离峰值约在74km处, 大约增加了3个数量级,比电磁脉冲(EMP)的电离效果大得多.  相似文献   

14.
Vertical and horizontal plasma drifts are investigated during the polarization jet (PJ) detection in the F2 ionospheric layer based on the Doppler measurements at the Yakutsk meridian chain of subauroral ionospheric stations. It is shown that the velocities of vertical and horizontal drifts are significantly higher than the background motion during PJ observation periods. The ionospheric plasma motion direction changes from upward to downward on the polar edge of the main ionospheric trough. Doppler measurements on the DPS-4 ionosondes are compared with the simultaneous measurements of the plasma drift on the DMSP satellites during their passage near the Yakutsk meridian. The two kinds of measurements are in good agreement with each other. During the magnetic storm of June 23, 2005, by measurements of the DMSP satellites, the velocities of upward plasma flows were 1.0–1.4 km/s at a satellite altitude of 850 km. In the ionospheric F region, this speed corresponds to 150 m/s. According to satellite measurements, the westward drift velocity reached 2.5 km/s. The development of the polarization jet in the ionosphere was accompanied by a tenfold decrease in the electron density in 15–30 min.  相似文献   

15.
电离层化学物质释放能导致释放区域电子密度的损耗,从而产生明显的电离层空洞现象.高频电波通过电离层空洞时,由于电子密度不同,对电波产生折射效果进而形成聚焦效应.本文利用射线追踪方法,评估高频电波通过空洞形成聚焦加热的效果.结果表明,释放水分子与SF6都能对电离层产生明显的空洞,空洞半径约为25~50 km,电子密度的损耗...  相似文献   

16.
Results of the studies of the ionospheric D region during spring periods of 2004 and 2005 using partial reflections and radiowave scattering by artificial periodical irregularities are presented. It has been found that the vertical profile of the electron density during this period has a local minimum at a height of ~75 km, which is absent in summer. The causes of the minimum appearance are discussed.  相似文献   

17.
大震前后电离层的扰动   总被引:2,自引:0,他引:2       下载免费PDF全文
李永生  李开春 《地震学报》1987,9(1):101-107
本文主要分析、讨论了大震前后电离层峰以下的总电子含量、200km 高度处电子浓度以及最大电子浓度所在高度等几个主要电离层参数的变化.对其他电离层直观形态的变化也进行了初步分析.作者认为,地震前的电离层扰动是存在的,并提出了一些可能与地震有关的定性的指标.   相似文献   

18.
The satellite low-latitude and midlatitude measurements of the disturbed postsunset plasma density and electron temperature at altitudes of ~900 km have been compared with the data of incoherent scattering and high-altitude rocket launching at the corresponding local time. It has been found that plasma density disturbances are independently caused by the turbulent interaction between atmospheric masses of gas and plasma ascending from heated and not yet cooled ionospheric regions and cooling masses descending from protonospheric altitudes. Plasma regions with an energetically nonequilibrium vertical density distribution of the mixture of heavy ion impurity (O+) and major light ions (H+) can simultaneously appear, as a result of which the gradient-drift impurity instability is generated. If this instability is sufficiently developed, there appears an anomalous ion drift with the formation of real plasma regions of decreased density. All these phenomena generate different irregularities in a wide range of scales: from several tens or hundreds of meters to several hundreds of kilometers.  相似文献   

19.
Variations in the electron density in the midlatitude ionospheric D region during launches and flights of different-type rockets at various distances from the launching site have been experimentally studied using partial reflections. It has been established that medium and heavy launch vehicles can generate short-term pulsating disturbances of electron density in the lower ionosphere at distances up to several thousand kilometers. These effects are apparently caused by stimulated pulsating electron fluxes from the Earth’s magnetosphere into the lower ionosphere with an energy of ~102–10 keV and fluxes of p ~ 108–109m?2 s?1.  相似文献   

20.
Experiments on the generation of artificial electromagnetic pulsations constitute an important part of investigations of the magnetosphere-ionosphere system with the use of an active action. The investigation of the generation of magnetic pulsations in the Pc1 frequency range has shown that the response of the ionosphere to heating is detected only in a few experiments. Although the primary perturbed parameter is the electron temperature, the efficiency of the generation of pulsations is determined by the perturbations of the ionospheric conductivity. The magnitude of these hertz perturbations depends complexly on the electron density profile and the parameters of a pump wave. The numerical experiment demonstrates the determining effect of the electron density in the D region on the magnitude of perturbations of the ionospheric conductivity. Under conditions of a low electron density, it is impossible to create a large perturbation of the conductivity in the Pc1 frequency range, although perturbations of the electron temperature can be large in this case. In view of a large number of electrons at altitudes of 70–90 km, which absorb a considerable fraction of the energy of a high-frequency wave, the electron temperature in the E region of the ionosphere cannot be sharply increased, but the amplitude of the variations of the ionospheric conductivity in this case is larger than that for the profiles with a low electron density. In the presence of the developed D region, the efficiency of the modification of the conductivity in the indicated frequency range can be increased by choosing the optimal frequency and polarization of the pump wave. A low efficiency of the experiments on the generation of artificial magnetic pulsations in the Pc1 frequency range is apparently explained by the fact that they were performed in winter in the absence of a well-developed D region of the ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号