首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Relative SV and SH wave speeds are generally attributed to radial seismic anisotropy which can be used as the indicator of crust/mantle deformation styles. Surface wave data were initially collected from events of magnitude Ms  5.0 and shallow or moderate focal depth occurring between 1980 and 2002: 713 of them generated Rayleigh waves and 660 Love waves, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1525 source-station Rayleigh waveforms and 1464 Love wave trains were earlier analysed by multiple filtering to obtain Love- and Rayleigh wave group velocity curves in the broad period range 10–105 s. We have performed tomographic inversion to obtain period-dependent group velocity and further shear wave velocity at 2° × 2°-sized grid-cells of a mesh covering the model region, after averaging azimuthal effects. Horizontally and vertically varying shear-wave velocities are observed, but the models of isotropic seismic velocity in the crust and upper mantle cannot fit simultaneously the inverted group-velocity dispersion curves due to the discrepancy in the transmission velocities of Love and Rayleigh waves, whose likely origin is the existence of radial anisotropy in the continental crust and topmost mantle. The strength of radial anisotropy computed from the Love–Rayleigh discrepancy and its spatial extent beneath the Qinghai-Tibet Plateau are shown as maps of percentage anisotropy at various depths down to 170 km and cross-sections along five profiles of reference. Areas in which radial anisotropy is in excess of 6% are found in the crust and upper mantle underlying most of the plateau, and even up to 10% in some places. The strength and spatial configuration of radial anisotropy seem to indicate the existence of a regime of horizontal compressive forces in the frame of the convergent Himalayan–Tibetan orogen, the laterally variation of the lithospheric rheology and the differential movement as regards the compressive driving forces.  相似文献   

2.
青藏高原东部基于噪声的面波群速度分布特征   总被引:2,自引:0,他引:2  
通过收集青海、甘肃、四川三省的76个地震台记录的2008年1—12月三分量的连续噪声数据,利用噪声面波层析成像的方法获得了青藏高原东部的面波群速度分布特征。首先采用多重滤波方法提取了1 000多条台站对5~50 s的三分量面波群速度频散曲线,然后将研究区域划分为0.2°×0.2°的网格,利用O ccam方法反演了瑞利波(R-R)和勒夫波(T-T)的群速度分布。反演得到的群速度分布特征与地表地质和构造特征表现出较好的相关性,清晰地揭示了地壳内部的横向速度变化。层析成像的结果显示在短周期(8~20 s)内,拥有较厚的沉积层的四川盆地表现为明显的低速特征,而青藏高原东部则表现为较高的群速度分布特征;随着周期的增加(>20 s),群速度的分布特征呈现出与短周期相反的特性,青藏高原东部下方的速度远远低于四川盆地,这可能与青藏高原东部中、下地壳低速层相关联,同时也意味着研究区域的地壳结构具有明显的横向不均匀性。在群速度分布图上,龙门山不仅是四川盆地与青藏高原的地形和构造分界带,同时也对应着高群速度与低群速度的过渡带。  相似文献   

3.
MODELING v_P AND Q ON EXPLOSION SEISMOLOGY DATA IN NE TIBET  相似文献   

4.
THE CRUSTAL STRUCTURE BENEATH THE EASTERN QINGHAI  相似文献   

5.
CRUST AND UPPER STRUCTURE OF QINGHAI-TIBET PLATEAU AND ITS ADJACENT REGIONS FROM SURFACE WAVEFORM INVERSION  相似文献   

6.
Abstract: By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of ~20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake.  相似文献   

7.
1.IntroductionTheManzhouli-SuifenheGeoscienceTransect(M-SGT)isinthenortheastChina,acrosstheprovincesofInnerMongoliaandHeilongiiang.Geologically,itissitllatedamongtheplatesofNorthChina,SiberiaandWesternPacific.ThewholeIengthoftheM-SGTisaboutl3Ookm,whichcrossesmanytectonicunits(Fig.l).ItisclearthatitstectonicsitUationisuniqueanditsgeologicstructUreiscomplex.Deepearthquakeshappenfrequentlya1ongthetransect.Therefore,itisarepresentativeprofileofnortheastChinaandtheNortheastAsia.TheM-S…  相似文献   

8.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

9.
青藏高原东北缘是青藏高原隆升的前缘地带,其构造变形特征一直是研究的热点。前人在该区域进行过面波成像研究,但不同结果存在较明显的差异,可能与不同成像方法的分辨率有关,此次研究分别使用基于射线的方法和基于程函方程的方法进行了瑞利波相速度成像。笔者对比了20 s、30 s和60 s的成像结果,两种方法的结果表现出相似的速度特征。总体的速度特征与研究区域的主要构造单元分布相吻合,青藏高原东北缘表现出低速异常,鄂尔多斯块体表现出高速异常。在银川河套地堑,基于程函方程的成像在20 s和30 s得到更明显的低速异常,低速异常体的分布与地堑的轮廓吻合更好,说明基于程函方程的方法对数据利用更充分。  相似文献   

10.
为了调查羌塘盆地中部壳内低速层分布特征,对布设在羌塘盆地的TITAN-I宽频带地震台站所记录的远震波形数据进行接收函数分析,并引入时频域相位滤波技术改善接收函数信噪比,反演得到各台站下方100 km深度范围内的一维S波速度结构.结果表明,时频域相位滤波方法能够显著提高信噪比;羌塘盆地Moho深度为58±6 km,具有较高的泊松比值;中下地壳壳内低速层广泛分布,横向不连续,埋深在20~30 km,层厚6~12 km,剪切波速度为3.4±0.1 km/s;部分地区在埋深为10 km的中上地壳存在一层厚约4 km的低速薄层.羌塘盆地中下地壳壳内低速层是由于上涌的深部软流圈物质与下地壳发生大范围的接触,造成壳内及上地幔部分熔融引起的.  相似文献   

11.
VORTEX MOTION OF THE CRUST DEFORMATION IN THE TIBETAN PLATEAU AND ITS FORELANDFromtheresultsofthecooperativeprojectbetweenChengduInstituteofGeologyandMineralResources andMassachusettsInstituteofTechnology  相似文献   

12.
By analyzing the deep seismic sounding profiles across the Longmen Shan,this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake.The Longmen Shan thrust belt marks not only the topographical change,but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin.A lowvelocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the ...  相似文献   

13.
THE ORIGIN OF DOUBLE HIGH CONDUCTIVITY LAYERS IN THE CRUST OF SOUTHERN TIBET AND ITS GEODYNAMIC CONSEQUENCE  相似文献   

14.
文中利用分布在鄂尔多斯块体及其南部周缘地区的53 个宽频带地震固定台站的连续波形记录,采用双台互相关计算 方法由背景噪声提取瑞利波格林函数,经时频分析获得相速度和群速度频散曲线,并分别计算了汾渭地堑、秦岭北缘、鄂 尔多斯块体内部和六盘山地区4 个不同构造区的平均频散曲线,进而反演了各构造区的地壳上地幔一维横波速度结构。结 果显示:地壳厚度在汾渭地堑为34 km,在秦岭北缘地区和鄂尔多斯块体均为40 km,在六盘山地区最厚,达49~50 km;相 应的上地幔顶部横波速度分别为4.20,4.2,4.30 和4.15 km/s;地壳内结构浅部特征差异最大,在地壳中部六盘山地区的速 度较低,下部地壳不同地区的波速较一致。  相似文献   

15.
THE CRUST VELOCITY STRUCTURE OF PROFILE 820 IN THE AREA OF EAST CHINA SEA AND ITS VICINITY  相似文献   

16.
To obtain the shear wave velocity profile for engineering application to near-subsurface, many geophysical techniques are used. The dispersion curve alone is unable to provide deeper shear wave velocity information for deep soil deposit; therefore, a joint inversion of dispersion curves with the horizontal over vertical (H/V) (i.e., apparently ellipticity) curve is recommended. The H/V curve obtained from the microtremor recording contains a major part of Love wave contribution to the noise wavefield horizontal component. Due to this presence of Love wave fraction, the H/V curve does not completely replicate the ellipticity of Rayleigh wave. In this study, we try to compare the Rayleigh wave ellipticity obtained from the borehole velocity model to the H/V curve obtained at the same locality from seismic ambient noise recording. Two different techniques available for the Love effect minimization are tested and compared with the borehole ellipticity. Finally, the joint inversion of H/V and dispersion curve is made, which shows great correspondence with the previous measurement at the site.  相似文献   

17.
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai–Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in mainland China and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional(3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai–Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north–south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by lowvelocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan–Dian and Songpan–Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan–Ganzi Block and the sub–block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80–120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background forthe area's strong earthquake activity.  相似文献   

18.
Group velocity dispersion data of fundamental-mode Rayleigh and Love waves for 12 wave paths within southeastern China have been measured by applying the multiple-filter technique to the properly rotated three-component digital seismograms from two Seismic Research Observatory stations, TATO and CHTO. The generalized surface wave inversion technique was applied to these group velocity dispersion data to determine the S-wave velocity structures of the crust and upper mantle for various regions of southeastern China. The results clearly demonstrate that the crust and upper mantle under southeastern China are laterally heterogeneous. The southern China region south of 25°N and the eastern China region both have a crustal thickness of 30 km. The eastern Tibet plateau along the 100°E meridian has a crustal thickness of 60 km. Central China, consisting mainly of the Yangtze and Sino-Korean platforms, has a crustal thickness of 40 km. A distinct S-wave low-velocity layer at 10–20 km depth in the middle crust was found under wave paths in southeastern China. On the other hand, no such crustal low-velocity layer is evident under the eastern Tibet plateau. This low-velocity layer in the middle crust appears to reflect the presence of a sialic low-velocity layer perhaps consisting of intruded granitic laccoliths, or possibly the remnant of the source zone of widespread magmatic activities known to have taken place in these regions since the late Carboniferous.  相似文献   

19.
青藏高原东部的隆升机制一直都是地学界的研究热点,研究学者们提出和发展了多种岩石圈变形模型,而存在多种模型的主要原因之一是对青藏高原东部地壳及岩石圈结构认识不足。本文主要针对SinoProbe-02项目横跨龙门山断裂带、全长400多公里的宽角、折射地震数据及重力数据进行联合反演和综合解释。研究结果表明,龙门山及邻近地区地壳结构可明确划分为上地壳、中地壳和下地壳。上地壳上层为沉积层,龙门山断裂带以西大部分区域被三叠纪复理岩覆盖,而在龙日坝断裂与岷江断裂之间出现了密度为2.7g/cm3的高速异常体;向东靠近龙门山地区,沉积层厚度逐渐减薄。中地壳速度变化不均一,而且变形强烈;若尔盖盆地和龙门山断裂带下方出现明显低速带;中地壳在龙门山西侧厚度加厚,在岷江断裂下方和四川盆地靠近龙门山断裂带地区附近厚度达到最大。莫霍面整体深度从东往西增厚,最厚可达56 km。本次研究得到的地壳结构和密度分布分析结果表明现有的地壳厚度和物质组成不足以支撑龙门山及邻近地区目前所达到的隆升高度,因此四川盆地刚性基底西缘因挤压作用产生的弯曲应力也是该地区抬升的重要条件之一。  相似文献   

20.
在印度洋板块与欧亚板块碰撞、挤压作用下,促使深部物质重新分异、调整和运移,并导致了地壳的短缩增厚,而且造成了高原的整体隆升和深部壳、幔物质的侧向流展。基于青藏高原腹地和周边地域地壳与上地幔的成层速度结构,特别是其特异层序的展布研究表明,青藏高原地壳巨厚,但岩石圈却相对较薄;地壳中于深20±5km处存在一低速层,层速度为5.7±0.1km/s,厚度为8±2km;上地幔软流圈顶部深度为110±10km;下地壳与上地幔盖层物质以地壳低速层为上滑移面,以岩石圈漂曳的上地幔软流圈顶面为下滑移面,在印度洋板块N-NNE向力源作用下在同步运移,即形成了青藏高原腹地和周边地域特异的大陆地球动力学环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号