首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater beneath the former Nebraska Ordnance Plant (NOP) is contaminated with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The current pump and treat facility is preventing offsite migration but does not offer a short-term solution. Our objective was to quantify the effectiveness of permanganate to degrade RDX in situ. This was accomplished by performing laboratory treatability experiments, aquifer characterization, and a pilot-scale in situ chemical oxidation (ISCO) demonstration. Treatability experiments confirmed that permanganate could mineralize RDX in the presence of NOP aquifer solids. The pilot-scale ISCO demonstration was performed using an extraction-injection well configuration to create a curtain of permanganate between two injection wells. RDX destruction was then quantified as the RDX-permanganate plume migrated downgradient through a monitoring well field. Electrical resistivity imaging (ERI) was used to identify the subsurface distribution of permanganate after injection. Results showed that RDX concentrations temporally decreased in wells closest to the injection wells by 70% to 80%. Observed degradation rates (0.12 and 0.087/d) were lower than those observed under laboratory batch conditions at 11.5 °C (0.20/d) and resulted from lower than projected permanganate concentrations. Both ERI and spatial electrical conductivity measurements verified that permanganate distribution was not uniform throughout the 6.1-m (20 feet) well screens and that groundwater sampling captured both treated and nontreated groundwater during pumping. Although heterogeneous flow paths precluded a uniform permanganate distribution, pilot-scale results provided proof-of-concept that permanganate can degrade RDX in situ and support permanganate as a possible remedial treatment for RDX-contaminated groundwater.  相似文献   

2.
In situ remediation technologies have the potential to alter subsurface properties such as natural organic matter (NOM) content or character, which could affect the organic carbon‐water partitioning behavior of chlorinated organic solvents, including dense nonaqueous phase liquids (DNAPLs). Laboratory experiments were completed to determine the nature and extent of changes in the partitioning behavior of trichloroethene (TCE) caused by in situ chemical oxidation or in situ surfactant flushing. Sandy porous media were obtained from the subsurface at a site in Orlando, Florida. Experiments were run using soil slurries in zero‐headspace reactors (ZHRs) following a factorial design to study the effects of porous media properties (sand vs. loamy sand with different total organic carbon [TOC] contents), TCE concentration (DNAPL presence or absence), and remediation agent type (potassium permanganate vs. activated sodium persulfate, Dowfax 8390 vs. Tween 80). Results revealed that the fraction of organic carbon (foc) of porous media after treatment by oxidants or surfactants was higher or lower relative to that in the untreated media controls. Isotherm experiments were run using the treated and control media to measure the distribution coefficient (Kd) of TCE. Organic carbon‐water partitioning coefficient values (Koc) calculated from the experimental data revealed that Koc values for TCE in the porous media were altered via treatment using oxidants and surfactants. This alteration can affect the validity of estimates of contaminant mass remaining after remediation. Thus, potential changes in partitioning behavior should be considered to help avoid decision errors when judging the effectiveness of an in situ remediation technology.  相似文献   

3.
Numerical simulations were used to identify and evaluate optimum electrode configurations and approaches for electrokinetic in situ chemical oxidation (EK‐ISCO) remediation of low‐permeability sediments. A newly developed groundwater and EK flow and reactive transport numerical model was used to conduct two‐dimensional scenario simulations of the coverage of an injected oxidant, permanganate, and the oxidation of a typical organic contaminant (tetrachloroethene, PCE). For linear configurations of vertical electrodes, the spacing of same‐polarity electrodes is recommended to be about one‐third to one‐quarter of the anode–cathode spacing. Greater coverage could also be achieved by locating additional oxidant injection wells at the divergence of the electric field in linear electrode configurations. Horizontal electrodes allowed greater contact between the injected permanganate and PCE and resulted in faster degradation of PCE compared to vertical electrodes. Pulsed oxidant injection, closer electrode spacing, and electric field reversal also resulted in faster EK‐ISCO remediation.  相似文献   

4.
Groundwater samples collected at sites where in situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of groundwater contaminants and permanganate (MnO4), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and contaminant in aqueous samples may negatively impact the quality of the sample as well as the analytical instruments used to quantify contaminant concentrations. In this study, binary mixtures comprised of (1) a multicomponent standard with permanganate and (2) groundwater samples collected at two ISCO field sites were preserved with ascorbic acid. Ascorbic acid reacts rapidly with the MnO4 and limits the reaction between MnO4 and the organic compounds in the mixture. Consequently, most of the compounds in the multicomponent standard were within the control limit for quality assurance. However, despite timely efforts to preserve the samples, the rapid reaction between permanganate and contaminant caused the concentration of several sensitive compounds to fall significantly below the lower control limit. Concentrations of volatile organic compounds in the field‐preserved binary mixture groundwater samples were greater than in samples refrigerated in the field and preserved upon arrival at the laboratory, indicating the time‐dependency and benefit of field preservation. The molar ratio of ascorbic acid required to neutralize KMnO4 was 1.64 (mol ascorbic acid/mol KMnO4); this provided a baseline to estimate the volume of ascorbic acid stock solution and/or the weight of crystalline ascorbic acid required to neutralize MnO4. Excess ascorbic acid did not negatively impact the quality of the aqueous samples, or analytical instruments, used in the analyses.  相似文献   

5.
A critical analysis of in situ chemical oxidation (ISCO) projects was performed to characterize situations in which ISCO is being implemented, how design and operating parameters are typically employed, and to determine the performance results being achieved. This research involved design of a database, acquisition and review of ISCO project information, population of the database, and analyses of the database using statistical methods. Based on 242 ISCO projects included in the database, ISCO has been used to treat a variety of contaminants; however, chlorinated solvents are by far the most common. ISCO has been implemented at sites with varied subsurface conditions with vertical injection wells and direct push probes being the most common delivery methods. ISCO has met and maintained concentrations below maximum contaminant levels (MCLs), although not at any sites where dense nonaqueous phase liquids (DNAPL) were presumed to be present. Alternative cleanup levels and mass reduction goals have also been attempted, and these less stringent goals are met with greater frequency than MCLs. The use of pilot testing is beneficial in heterogeneous geologic media, but not so in homogeneous media. ISCO projects cost $220,000 on average, and cost on average $94/yd3 of target treatment zone. ISCO costs vary widely based on the size of the treatment zone, the presence of DNAPL, and the oxidant delivery method. No case studies were encountered in which ISCO resulted in permanent reductions to microbial populations or sustained increases in metal concentrations in groundwater at the ISCO-treated site.  相似文献   

6.
Activated persulfate is a commonly used oxidant source used for in situ chemical oxidation (ISCO) for remediation of subsurface contamination. Surfactants are sometimes used in ISCO to desorb contaminants and dissolve nonaqueous phase liquids (NAPLs). The potential activation of persulfate by such surfactants was investigated, and the reactive oxygen species generated by persulfate in the presence of anionic, nonionic, and cationic surfactants were determined. Twenty surfactants were screened; most activated persulfate to generate reductants + nucleophiles at acidic and basic pH. The most reactive anionic, nonionic, and cationic surfactants (Lankropol 4500, polyethylene glycol 400, and Ethoduomeen T/25) were investigated in more detail. All three surfactants activated persulfate; however, the cationic surfactant showed the most potential for persulfate activation with high fluxes of hydroxyl radical and reductants + nucleophiles. The results of this research demonstrate that surfactants added to ISCO systems often activate persulfate to generate reductants at both acidic and basic pH, and hydroxyl radical at basic pH. These findings provide a new paradigm for persulfate activation in surfactant in situ chemical oxidation (SISCO) systems; pH regimes >11 may not be necessary for persulfate activation resulting in cost savings and potentially more effective activation of persulfate.  相似文献   

7.
This research was conducted to evaluate the combination of electromigration and potassium permanganate as a potential remediation method for low-permeability media (e.g., soil and sediment) contaminated with dissolved and sorbed organic contaminants. The experimental procedure was composed of two stages: determination of migration rates of permanganate through homogeneous cores and a primarily qualitative analysis of migration in more heterogeneous, two-dimensional scenarios. Results indicated that transport of permanganate through fine-grained porous media and clays can be undertaken using electromigration, and electromigration rates were found to be at least 400% faster than diffusion alone. In addition, the use of an applied electric field in a flushing scenario was shown to result in almost 100% sweep efficiency of a domain consisting of clay blocks interspersed in a glass bead medium. The results of the study show that there is potential for this method to be able to deliver permanganate and other potential remedial agents to treat contaminated zones within heterogeneous and low-permeability porous media through in situ chemical oxidation or other processes.  相似文献   

8.
DyeLIF? is a new version of laser‐induced fluorescence (LIF) for high‐resolution three‐dimensional subsurface mapping of nonaqueous phase liquids (NAPLs) in the subsurface. DyeLIF eliminates the requirement that the NAPL contains native fluorophores (such as those that occur in compounds like polynuclear aromatic hydrocarbons [PAHs]) and can therefore be used to detect chlorinated solvents and other nonfluorescing NAPLs that had previously been undetectable with conventional LIF tools. With DyeLIF, an aqueous solution of water and nontoxic hydrophobic dye is continuously injected ahead of the sapphire detection window while the LIF probe is being advanced in the subsurface. If soil containing NAPL is penetrated, the injected dye solvates into the NAPL within a few milliseconds, creating strong fluorescence that is transmitted via fiber‐optic filaments to aboveground optical sensors. A detailed field evaluation of the novel DyeLIF technology was performed at a contaminated industrial site in Lowell, Massachusetts, USA where chlorinated solvent dense nonaqueous phase liquid (DNAPL) persists below the water table in sandy sediments. Continuously cored boreholes were drilled adjacent to 5 of 30 DyeLIF probes that were advanced at that site. The cores were subsampled in high resolution to generate discrete‐depth soil samples as splits at the same depths where DNAPL was detected in the colocated DyeLIF probes. The cores were analyzed above ground using (1) colorimetric screening using hydrophobic dye tests, (2) laboratory extraction and quantitative chemical analysis, (3) “Benchtop” DyeLIF, and (4) volumetric moisture content. Correlation between DyeLIF and aboveground analyses of the soil cores was excellent: 98% agreement with positive DNAPL detections in samples where DNAPL pore saturations were >0.7% (based on quantitative soil analyses) and the ex situ tests. DyeLIF produced the equivalent of one aboveground colorimetric dye test every 0.2 inch (0.5 cm) of probing. With average daily probing of 395 linear feet (120.4 m), this was the equivalent of 12,039 discrete‐depth colorimetric dye tests/day. Because DyeLIF is an in situ measurement, there are no issues with soil core recovery like there would be for conventional ex situ colorimetric dye tests and 100% characterization of the probed intervals is achieved. Tracking the injection rate and pressure of the dye solution provides simultaneous data regarding relative soil permeability, similar to other direct push (DP) hydraulic profiling tools. Conventional LIF is considered the premier DP tool to identify and map NAPL containing PAHs in the subsurface or confirm its absence. While chlorinated solvent DNAPLs at some field sites contain impurities (e.g., solvated greases or oils) that make them detectable with conventional LIF techniques, at other sites, the DNAPL cannot be detected with conventional LIF. At such sites, the injection of a hydrophobic dye ahead of the sapphire window with the DyeLIF system now makes the LIF technology applicable to the many types of NAPLs that were previously invisible using conventional LIF techniques.  相似文献   

9.
Cone penctrometer test (CPT) based Raman spectroscopy was used to identify separate phase tetrachloroethylene (PCE) and trichlorocthylene (TCE) contamination in the subsurface at two locations during field tests conducted at the U.S. Department of Energy's (DOE) Savannah River site. Clear characteristic Raman spectral peaks for PCE and TCE were observed at two sites and several depths during CPT deployment. Because of the uniqueness of a Raman spectrum for a given compound, these data are compelling evidence of the presence of the two compounds. The Raman spectral results correlated with high PCE and TCE concentrations in soil samples collected from the same subsurface zones, confirming that the method is a viable dense nonaqueous phase liquid (DNAPL) characterization technique. The Raman spectroscopic identification of PCE and TCE in these tests represents the first time that DNAPLs have been unequivocally located in the subsurface by an in situ technique.
The detection limit of the Raman spectroscopy is related to the probability of contaminant droplets appearing on the optical window in the path of the probe light. Based on data from this fieldwork the Raman technique may require a threshold quantity of DNAPL to provide an adequate optical cross section for spectroscopic response. The low aqueous solubility of PCE and TCE and relatively weak optical intensity of the Raman signal precludes the detection of aqueous phase contaminants by this method, making it selective for DNAPL contaminants only.  相似文献   

10.
A two-dimensional, transient-flow, and transport numerical model was developed to simulate in situ chemical oxidation (ISCO) of trichloroethylene and tetrachloroethylene by potassium permanganate in fractured clay. This computer model incorporates dense, nonaqueous phase liquid dissolution, reactive aquifer material, multispecies matrix diffusion, and kinetic formulations for the oxidation reactions. A sensitivity analysis for two types of parameters, hydrogeological and engineering, including matrix porosity, matrix organic carbon, fracture aperture, potassium permanganate dosage, and hydraulic gradient, was conducted. Remediation metrics investigated were the relative rebound concentrations arising from back diffusion and percent mass destroyed. No well-defined correlation was found between the magnitude of rebound concentrations during postremedy monitoring and the amount of contaminant mass destroyed during the application. Results indicate that all investigated parameters affect ISCO remediation in some form. Results indicate that when advective transport through the fracture is dominant relative to diffusive transport into the clay matrix (large System Peclet Number), permanganate is more likely to be flushed out of the system and treatment is not optimal. If the System Peclet Number is too small, indicating that diffusion into the matrix is dominant relative to advection through the fracture, permanganate does not traverse the entire fracture, leading to postremediation concentration rebound. Optimal application of ISCO requires balancing advective transport through the fracture with diffusive transport into the clay matrix.  相似文献   

11.
In situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming groundwater contaminants into harmless by‐products. Owing to oxidant persistence, groundwater samples collected at hazardous waste sites may contain both the contaminant(s) and the oxidant in a “binary mixture.” Binary mixtures composed of sodium persulfate (2.5 g/L; 10.5 mM) and volatile organic compounds (VOCs) (benzene, toluene, m‐xylene, perchloroethylene, trichloroethylene) were analyzed to assess the impact on the quality of the sample. A significant decline (49 to 100%) in VOC concentrations was measured in binary mixtures using gas chromatography (GC) purge and trap, and GC mass spectroscopy headspace methods. Preservation of the binary mixture samples was achieved through the addition of ascorbic acid (99 to 100% VOC average recovery). High concentrations of ascorbic acid (42 to 420 mM) did not interfere in the measurement of the VOCs and did not negatively impact the analytical instruments. High concentrations of ascorbic acid favored the reaction between persulfate and ascorbic acid while limiting the reaction between persulfate and VOCs. If an oxidant is detected and the binary sample is not appropriately preserved, the quality of the sample is likely to be compromised.  相似文献   

12.
The strong influence of subsurface heterogeneity on contaminant migration and in situ remediation calls for an improved understanding of its origins and more efficient methods of characterization. Accordingly, an outcrop study of physical and chemical heterogeneity was conducted in a glaciofluvial deposit in Deerfield, New Hampshire, in order to uncover processes controlling the spatial variation of sediment properties and evaluate the extent to which geologic information can be used to characterize the observed variation. The results indicate that physical and chemical properties at the Deerfield site have distinctly different spatial correlation structures. Lithologic facies explain 31% to 60% of the variation in permeability, dithionite citrate (DC)-extractable manganese, and DC-extractable aluminum. Lithofacies bounding surfaces do not separate regions of significantly different DC-extractable iron; instead, 49% of its variation is explained by sediment color. Color also accounts for 34% of the variation in DC-extractable aluminum and 60% of the variation in DC-extractable manganese. Strong relationships with sediment facies and/or color enable detailed mapping of permeability, extractable iron, and extractable manganese. Differences in the geometries of iron and manganese enrichment, petrographic observations, and scanning electron microscope analyses indicate that (hydr)oxide grain coatings originated from the postdepositional weathering of biotite and garnet, coupled with local, redox-driven redistribution of the liberated iron and manganese. The findings suggest that lithofacies and color information can aid the characterization and modeling of heterogeneity at similar carbon-poor glaciofluvial sites.  相似文献   

13.
Groundwater beneath the former Nebraska Ordnance Plant (NOP) is contaminated with the explosive hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) and trichloroethene (TCE). Previous treatability experiments confirmed that permanganate could mineralize RDX in NOP aquifer material. The objective of this study was to determine the efficacy of permanganate to transform RDX in the field by monitoring a pilot‐scale in situ chemical oxidation (ISCO) demonstration. In this demonstration, electrical resistivity imaging (ERI) was used to create two‐dimensional (2‐D) images of the test site prior to, during, and after injecting sodium permanganate. The ISCO was performed by using an extraction‐injection well configuration to create a curtain of permanganate. Monitoring wells were positioned downgradient of the injection zone with the intent of capturing the permanganate‐RDX plume. Differencing between ERI taken preinjection and postinjection determined the initial distribution of the injected permanganate. ERI also quantitatively corroborated the hydraulic conductivity distribution across the site. Groundwater samples from 12 downgradient wells and 8 direct‐push profiles did not provide enough data to quantify the distribution and flow of the injected permanganate. ERI, however, showed that the permanganate injection flowed against the regional groundwater gradient and migrated below monitoring well screens. ERI combined with monitoring well samples helped explain the permanganate dynamics in downgradient wells and support the use of ERI as a means of monitoring ISCO injections.  相似文献   

14.
Dense nonaqueous phase liquid (DNAPL) source areas containing chlorinated volatile organic compounds (cVOCs) such as trichloroethene (TCE) and perchloroethene (PCE) often give rise to significant dissolved plumes in groundwater, leading to the closure of downgradient water supply wells and creating vapor intrusion issues in buildings located above the plume. Hydraulic containment via pump‐and‐treat has often been implemented to limit migration but must continue indefinitely. Removal of the DNAPL source area by means such as in situ thermal remediation (ISTR) offers the potential to diminish or end the need for hydraulic containment if the associated dissolved plume attenuates sufficiently following source removal. A question often raised is whether this occurs or whether the back diffusion of contaminants from secondary sources such as low‐permeability lenses in the dissolved plume precludes it. The authors conducted DNAPL source removal using ISTR at dozens of sites. This paper presents a compilation of cases—10 separate DNAPL source areas at five project sites—where data indicate that the implementation of a thorough ISTR in a DNAPL source area can result in the attenuation of the associated dissolved plume, such that in several cases, long‐standing pump‐and‐treat systems could be turned off. Our findings contrast with recent assertions that aggressive source remediation may not be justifiable because dissolved plume concentrations will not decline sufficiently. We show that the application of ISTR can result in the thorough removal of the DNAPL source, effective diminution of dissolved plume groundwater concentrations, and achievement of drinking water standards.  相似文献   

15.
Dense nonaqueous phase liquids (DNAPLs) are immiscible fluids with a specific gravity greater than, water. When present, DNAPLs present a serious and long-term source of continued ground water and soil contamination (Pankow and Cherry 1996). Accurate characterization and delineation of DNAPL in the subsurface is critical for evaluating restoration potential and for remedy design at a site. However, obtaining accurate and definitive direct evidence of DNAPL is difficult. A field study was recently performed comparing several approaches to DNAPL characterization at a site where anecdotal and limited direct evidence of DNAPL exists. The techniques evaluated included a three-dimensional high-resolution seismic survey, field screening of soil cores with a flame ionization detector (FID)/organic vapor analyzer (OVA), hydrophobic (Sudan IV) dye-impregnated reactive FLUTe® (Flexible Liner Underground Technologies) liner material in combination with Rotasonic drill cores, centrifuged soil with Sudan IV dye, ultraviolet light (UV) fluorescence, a Geoprobe® Membrane Interface Probe (MIP®), and phase equilibrium partitioning evaluations based on laboratory analysis of soil samples. Sonic drilling provided reliable continuous cores from which minor soil structures could be evaluated and screened with an OVA, The screening provided reliable preliminary data for identifying likely DNAPL zones and for selecting samples for further analyses. The FLUTe liner material provided the primary direct evidence of the presence of DNAPL and reliable information on the thickness and nature of its occurrence (i.e., pooled or ganglia). The MIP system provided good information regarding the subsurface lithology and rapid identification and delineation of probable DNAPL areas. The three-dimensional seismic survey was of minimal benefit to this study, and the centrifuging of samples with Sudan IV dye and the use of UV fluorescence provided no benefit. Results of phase equilibrium partitioning concentration calculations for soil samples (to infer the presence of DNAPL) were in good agreement with the site screening data. Additionally, screening data compared well with previous ground water data and supported using 1% of the pure phase solubility limit of Freon 113 (2 mg/L) as an initial means to define the DNAPL study area. Based on the results of this study, the preferred approach for identifying and delineating DNAPL in the subsurface is to initially evaluate ground water data and define an area where dissolved concentrations of the target analyte(s) approach 1% of the pure phase solubility limit. Within this study area, the MIP device is used to more specifically identify areas and lithologic zones where DNAPL may have accumulated. Core samples (either Rotasonic or Geoprobe) are then collected from zones where MIP readings are indicative of the presence of DNAPL. Soil samples from the free-product portions of the core(s) are then submitted to a laboratory for positive analyte identification. Soil analyses are then combined with site-specific geotechnical information (i.e., fraction organic carbon, soil bulk density, and porosity) and equilibrium partitioning algorithms used to estimate concentrations of organic contaminants in soil samples that would be indicative of free product. Used in combination, the soil analysis and the MIP records appear to provide accurate DNAPL identification and delineation.  相似文献   

16.
Release of Chromium from Soils with Persulfate Chemical Oxidation   总被引:1,自引:0,他引:1  
An important part of the evaluation of the effectiveness of persulfate in situ chemical oxidation (ISCO) for treating organic contaminants is to identify and understand its potential impact on metal co‐contaminants in the subsurface. Chromium is a redox‐sensitive and toxic metal the release of which poses considerable risk to human health. The objective of this study was to investigate the impact of persulfate chemical oxidation on the release of chromium from three soils varying in physical‐chemical properties. Soils were treated with unactivated and activated persulfate [activated with Fe(II), Fe(II)‐EDTA, and alkaline pH] at two different concentrations (i.e., 41 mM and 2.1 mM persulfate) for 48 h and 6 months and were analyzed for release of chromium. Results show that release of chromium with persulfate chemical oxidation depends on the soil type and the activation method. Sandy soil with low oxidant demand released more chromium compared to soils with high oxidant demand. More chromium was released with alkaline pH activation. Alkaline pH and high Eh conditions favor oxidation of Cr(III) to Cr(VI), which is the main mechanism of release of chromium with persulfate chemical oxidation. Unactivated and Fe(II)‐activated persulfate decreased pH and at low pH in absence of EDTA chromium release is not a concern. These results indicate that chromium release can be anticipated based on the given site and treatment conditions, and ISCO system can be designed to minimize potential chromium release when treating soils and groundwater contaminated with both organic and metal contaminants.  相似文献   

17.
This study investigates stochastic optimization of dense nonaqueous phase liquid (DNAPL) remediation design at Dover Air Force Base Area 5 using emulsified vegetable oil (EVO) injection. The Stochastic Cost Optimization Toolkit (SCOToolkit) is used for the study, which couples semianalytical DNAPL source depletion and transport models with parameter estimation, error propagation, and stochastic optimization modules that can consider multiple sources and remediation strategies. Model parameters are calibrated to field data conditions on prior estimates of parameters and their uncertainty. Monte Carlo simulations are then performed to identify optimal remediation decisions that minimize the expected net present value (NPV) cleanup cost while maintaining concentrations at compliance wells under the maximum contaminant level (MCL). The results show that annual operating costs could be reduced by approximately 50% by implementing the identified optimal remediation strategy. We also show that recalibration and reoptimization after 50 years using additional monitoring data could lead to a further 60% reduction in annual operating cost increases the reliability of the proposed remediation actions.  相似文献   

18.
Continuous remediation monitoring using sensors is potentially a more effective and inexpensive alternative to current methods of sample collection and analysis. Gaseous components of a system are the most mobile and easiest to monitor. Continuous monitoring of soil gases such as oxygen, carbon dioxide, and contaminant vapors can provide important quantitative information regarding the progress of bioremediation efforts and the area of influence of air sparging or soil venting. Laboratory and field tests of a commercially available oxygen sensor show that the subsurface oxygen sensor provides rapid and accurate data on vapor phase oxygen concentrations. The sensor is well suited for monitoring gas flow and oxygen consumption in the vadose zone during air sparging and bioventing. The sensor performs well in permeable, unsaturated soil environments and recovers completely after being submerged during temporary saturated conditions. Calibrations of the in situ oxygen sensors were found to be stable after one year of continuous subsurface operation. However, application of the sensor in saturated soil conditions is limited. The three major advantages of this sensor for in situ monitoring arc as follows: (1) it allows data acquisition at any specified time interval; (2) it provides potentially more accurate data by minimizing disturbance of subsurface conditions; and (3) it minimizes the cost of field and laboratory procedures involved in sample retrieval and analysis.  相似文献   

19.
20.
A preliminary field performance evaluation of in situ bioremediation of a contaminated aquifer at the Libby, Montana, Superfund site, a former wood preserving site, was conducted for the Bioremediation Field Initiative sponsored by the U.S. Environmental Protection Agency (U.S. EPA). The current approach for site remediation involves injecting oxygen and nutrients into the aquifer to stimulate microbial degradation of target compounds that include polycyclic aromatic hydrocarbons and pentachlorophenol. The preliminary field evaluation determined that, in addition to the oxygen demand associated with the microbial oxidation of the organic contamination, uncontaminated aquifer sediments at the site are naturally reduced and also exert a significant oxygen demand. This conclusion is supported by three types of information: (1) analyses of ground water samples; (2) results from a field-scale tracer test; and (3) results of laboratory evaluations of oxygen use by reduced aquifer sediment samples. An estimate of the cost of supplying hydrogen peroxide to satisfy the oxygen demand of the uncontaminated reduced sediments is provided to demonstrate that the additional cost of oxidizing the reduced sediments could be significant. The presence of naturally occurring reduced sediments at a contamination site should be considered in the design of subsurface oxidant delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号