首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on air pollution and climate change have shown that forest fires constitute one of the major sources of atmospheric trace gases and particulate matter, especially during the dry season. However, these emissions remain difficult to quantify due to uncertainty on the extent of burned areas and deficient knowledge on the forest fire behaviours in each country. This study aims to estimate emissions from forest fires in Thailand by using the combination of the Moderate Resolution Imaging Spectroradiometer (MODIS) for active fire products and country-specific data based on prescribed burning experiments. The results indicate that 27817 fire hotspots (FHS) associated with forest fires were detected by the MODIS during 2005–2009. These FHS mainly occurred in the northern, western, and upper north-eastern parts of Thailand. Each year, the most significant fires were observed during January–May, with a peak in March. The majority of forest FHS were detected in the afternoon. According to the prescribed burning experiments, the average area of forest burned per fire event was found to fall within the range 1.09 to 12.47 ha, depending upon the terrain slope and weather conditions. The total burned area was computed at 159309 ha corresponding to the surface biomass fuel of 541515 tons dry matter. The forest fire emissions were computed at 855593 tons of CO2, 56318 tons of CO, 3682 tons of CH4, 108 tons of N2O, 4928 tons of PM2.5, 4603 tons of PM10, 357 tons of BC and 2816 tons of OC.  相似文献   

2.
Future Area Burned in Canada   总被引:16,自引:3,他引:16  
Historical relationships between weather, the Canadian fire weather index (FWI) system components and area burned in Canadian ecozones were analysed on a monthly basis in tandem with output from the Canadian and the Hadley Centre GCMs to project future area burned. Temperature and fuel moisture were the variables best related to historical monthly area burned with 36–64% of the variance explained depending on ecozone. Our results suggest significant increases in future area burned although there are large regional variations in fire activity. This was especially true for the Canadian GCM where some ecozones show little change in area burned, however area burned was not projected to decrease in any of the ecozones modelled. On average, area burned in Canada is projected to increase by 74–118% by the end of this century in a 3 × CO2 scenario. These estimates do not explicitly take into account any changes in vegetation, ignitions, fire season length, and human activity (fire management and land use activities) that may influence area burned. However, the estimated increases in area burned would have significant ecological, economic and social impacts for Canada.  相似文献   

3.
In this study, we investigated the impact of future climate change on fire activity in 12 districts across Portugal. Using historical relationships and the HIRHAM (High Resolution Hamburg Model) 12 and 25 km climate simulations, we assessed the fire weather and subsequent fire activity under a 2 × CO2 scenario. We found that the fire activity prediction was not affected by the spatial resolution of the climate model used (12 vs. 25 km). Future area burned is predicted to increase 478% for Portugal as a whole, which equates to an increase from 1.4% to 7.8% of the available burnable area burning annually. Fire occurrence will also see a dramatic increase (279%) for all of Portugal. There is significant spatial variation within these results; the north and central districts of the country generally will see larger increases in fire activity.  相似文献   

4.
Fire regime is affected by climate and human settlements. In the Mediterranean, the predicted climate change is likely to exacerbate fire prone weather conditions, but the mid- to long-term impact of climate change on fire regime is not easily predictable. A negative feedback via fuel reduction, for instance, might cause a non-linear response of burned area to fire weather. Also, the number of fires escaping initial control could grow dramatically if the fire meteorology is just slightly more severe than what fire brigades are prepared for. Humans can directly influence fire regimes through ignition frequency, fire suppression and land use management. Here we use the fire regime model FIRE LADY to assess the impacts of climate change and local management options on number of fires, burned area, fraction of area burned in large fires and forest area during the twenty-first century in three regions of NE Spain. Our results show that currently fuel-humidity limited regions could suffer a drastic shift of fire regime with an up to 8 fold increase of annual burned area, due to a combination of fuel accumulation and severe fire weather, which would result in a period of unusually large fires. The impact of climate change on fire regime is predicted to be less pronounced in drier areas, with a gradual increase of burned area. Local fire prevention strategies could reduce but not totally offset climate induced changes in fire regimes. According to our model, a combination of restoring the traditional rural mosaic and classical fire prevention would be the most effective strategy, as a lower ignition frequency reduces the number of fires and the creation of agricultural fields in marginal areas reduces their extent.  相似文献   

5.
We estimated the impact of climatic change on wildland fire and suppression effectiveness in northern California by linking general circulation model output to local weather and fire records and projecting fire outcomes with an initial-attack suppression model. The warmer and windier conditions corresponding to a 2 × CO2 climate scenario produced fires that burned more intensely and spread faster in most locations. Despite enhancement of fire suppression efforts, the number of escaped fires (those exceeding initial containment limits) increased 51% in the south San Francisco Bay area, 125% in the Sierra Nevada, and did not change on the north coast. Changes in area burned by contained fires were 41%, 41% and –8%, respectively. When interpolated to most of northern California's wildlands, these results translate to an average annual increase of 114 escapes (a doubling of the current frequency) and an additional 5,000 hectares (a 50% increase) burned by contained fires. On average, the fire return intervals in grass and brush vegetation types were cut in half. The estimates reported represent a minimum expected change, or best-case forecast. In addition to the increased suppression costs and economic damages, changes in fire severity of this magnitude would have widespread impacts on vegetation distribution, forest condition, and carbon storage, and greatly increase the risk to property, natural resources and human life.  相似文献   

6.
High-temporal resolution meteorological output from the Parallel Climate Model (PCM) is used to assess changes in wildland fire danger across the western United States due to climatic changes projected in the 21st century. A business-as-usual scenario incorporating changing greenhouse gas and aerosol concentrations until the year 2089 is compared to a 1975–1996 base period. Changes in relative humidity, especially dryingover much of the West, are projected to increase the number of days of high fire danger (based on the energy release component (ERC) index) at least through the year 2089 in comparison to the base period. The regions most affected are the northern Rockies, Great Basin and the Southwest –regions that have already experienced significant fire activity early this century. In these regions starting around the year 2070, when the model climate CO2 has doubled from present-day, the increase in the number ofdays that ERC (fuel model G) exceeds a value of 60 is as much as two to three weeks. The Front Range of the Rockies and the High Plains regions do not show a similar change. For regions where change is predicted, new fire and fuels management strategies and policies may be needed to address added climatic risks while also accommodating complex and changing ecosystems subject to human stresses on the region. These results, and their potential impact on fire and land management policy development, demonstrate the value of climate models for important management applications, as encouraged under the Department of Energy Accelerated Climate Prediction Initiative (ACPI), under whose auspices this work was performed.  相似文献   

7.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   

8.
In this study outputs from four current General Circulation Models (GCMs) were used to project forest fire danger levels in Canada and Russia under a warmer climate. Temperature and precipitation anomalies between 1 × CO2 and 2 × CO2 runs were combined with baseline observed weather data for both countries for the 1980–1989 period. Forecast seasonal fire weather severity was similar for the four GCMs, indicating large increases in the areal extent of extreme fire danger in both countries under a 2 × CO2 climate scenario. A monthly analysis, using the Canadian GCM, showed an earlier start to the fire season, and significant increases in the area experiencing high to extreme fire danger in both Canada and Russia, particularly during June and July. Climate change as forecast has serious implications for forest fire management in both countries. More severe fire weather, coupled with continued economic constraints and downsizing, mean more fire activity in the future is a virtual certainty. The likely response will be a restructuring of protection priorities to support more intensive protection of smaller, high-value areas, and a return to natural fire regimes over larger areas of both Canada and Russia, with resultant significant impacts on the carbon budget.  相似文献   

9.
Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021–2040 compared to the baseline period of 1961–1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021–2040) over the baseline (1961–1990) varies from +3.4 to ?14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.  相似文献   

10.
The most appropriate indices with which to quantify Australian bushfire danger are the McArthur fire danger meters. These meters use meteorological information to produce a fire danger index that is directly related to the chance of a fire starting - and to the severity of a fire once it has started. The Mark 5 forest-fire danger meter uses air temperature, relative humidity and wind speed, plus a drought factor that is calculated using daily rainfall and temperature information.Three years of daily data generated from the CSIRO four-level general circulation model, and thirty years of daily data generated from the CSIRO nine-level model were used to estimate the daily McArthur forest fire danger index for simulations corresponding to present conditions, and to those corresponding to doubled atmospheric CO2. The performance of these models with respect to fire danger was tested by comparing the fire danger index for Sale (in the Eastern part of Victoria, South-eastern Australia) calculated from analysis of daily climatological data with the modelled annual cumulative forest fire danger index for the grid point that was representative of Sale. Data from both models for all Australian grid points were also examined. Both models predict an increase in fire danger over much of Australia for their doubled CO2 scenarios.The results from the models confirm that annually averaged daily relative humidity is the single most important variable in the estimation of forest fire danger on an annual basis, yet the models tend to produce relative humidities that are slightly too low so that the fire danger is overestimated. A simple one-box model of evaporation indicates that the value of relative humidity to be expected under an altered climatic regime depends on the modelled relation between actual and potential evaporation, the present values of relative humidity and evaporation rate, as well as on the expected changes in wind speed.  相似文献   

11.
We present future fire danger scenarios for the countries bordering the Mediterranean areas of Europe and north Africa building on a multi-model ensemble of state-of-the-art regional climate projections from the EU-funded project ENSEMBLES. Fire danger is estimated using the Canadian Forest Fire Weather Index (FWI) System and a related set of indices. To overcome some of the limitations of ENSEMBLES data for their application on the FWI System—recently highlighted in a previous study by Herrera et al. (Clim Chang 118:827–840, 2013)—we used an optimal proxy variable combination. A robust assessment of future fire danger projections is undertaken by disentangling the climate change signal from the uncertainty derived from the multi-model ensemble, unveiling a positive signal of fire danger potential over large areas of the Mediterranean. The increase in the fire danger signal is accentuated towards the latest part of the transient period, thus pointing to an elevated fire potential in the region with time. The fire-climate links under present and future conditions are further discussed building upon observed climate data and burned area records along a representative climatic gradient within the study region.  相似文献   

12.
Abstract

The impacts of climate change on surface air temperature (SAT) and winds in the Gulf of St. Lawrence (GSL) are investigated by performing simulations from 1970 to 2099 with the Canadian Regional Climate Model (CRCM), driven by a five-member ensemble. Three members are from Canadian Global Climate Model (CGCM3) simulations following scenario A1B from the Intergovernmental Panel on Climate Change (IPCC); one member is from the Community Climate System Model, version 3 (CCSM3) simulation, also following the A1B scenario; and one member is from the CCSM4 (version 4) simulation following the Representative Concentration Pathway (RCP8.5) scenario. Compared with North America Regional Reanalysis (NARR) data, it is shown that CRCM can reproduce the observed SAT spatial patterns; for example, both CRCM simulations and NARR data show a warm SAT tongue along the eastern Gulf; CRCM simulations also capture the dominant northwesterly winds in January and the southwesterly winds in July. In terms of future climate scenarios, the spatial patterns of SAT show plausible seasonal variations. In January, the warming is 3°–3.5°C in the northern Gulf and 2.5°–3°C near Cabot Strait during 2040–2069, whereas the warming is more uniform during 2070–2099, with SAT increases of 4°–5°C. In summer, the warming gradually decreases from the western side of the GSL to the eastern side because of the different heat capacities between land and water. Moreover, the January winds increase by 0.2–0.4?m?s?1 during 2040–2069, related to weakening stability in the atmospheric planetary boundary layer. However, during 2070–2099, the winds decrease by 0.2–0.4?m?s?1 over the western Gulf, reflecting the northeastward shift in northwest Atlantic storm tracks. In July, enhanced baroclinicity along the east coast of North America dominates the wind changes, with increases of 0.2–0.4?m?s?1. On average, the variance for the SAT changes is about 10% of the SAT increase, and the variance for projected wind changes is the same magnitude as the projected changes, suggesting uncertainty in the latter.  相似文献   

13.
Summary In Canada, the average annual area of burned forest has increased from around 1 million ha in the 1970’s to over 2.5 million ha in the 1990’s. A previous study has identified the link between anomalous mid-tropospheric circulation at 500 hPa over northern North America and wildland fire severity activity in various large regions of Canada over the entire May to August fire season. In this study, a northern North American study region of the hemispheric gridded 5° latitude by 10° longitude 500 hPa dataset is identified and analysed from 1959 to 1996 for a sequence of six monthly periods through the fire season, beginning in April and ending in September. Synoptic types, or modes of upper air behavior, are determined objectively by the eigenvector method employing K-means cluster analysis. Monthly burned areas from the Canadian Large Fire Database (LFDB) for the same period, 1959 to 1996, are analysed in conjunction with the classified monthly 500 hPa synoptic types. Relationships between common monthly patterns of anomalous upper flow and spatial patterns of large fire occurrence are examined at the ecozone level. Average occurrence of a monthly synoptic type associated with very large area burned is approximately 18% of the years from 1959 to 1996. The largest areas burned during the main fire (May to August) season occur in the western Boreal and Taiga ecozones – the Taiga Plains, Taiga Shield, Boreal West Shield and Boreal Plains. Monthly burned areas are also analysed temporally in conjunction with a calculated monthly zonal index (Zim) for two separate areas defined to cover western and eastern Canada. In both western and eastern Canada, high area burned is associated with synoptic types with mid-tropospheric ridging in the proximity of the affected region and low Zim with weak westerlies and strong meridional flow over western Canada. Received April 3, 2001 Revised July 13, 2001  相似文献   

14.
Wildfires are a common experience in Alaska where, on average, 3,775?km2 burn annually. More than 90% of the area consumed occurs in Interior Alaska, where the summers are relatively warm and dry, and the vegetation consists predominantly of spruce, birch, and cottonwood. Summers with above normal temperatures generate an increased amount of convection, resulting in more thunderstorm development and an amplified number of lightning strikes. The resulting dry conditions facilitate the spread of wildfires started by the lightning. Working with a 55-year dataset of wildfires for Alaska, an increase in the annual area burned was observed. Due to climate change, the last three decades have shown to be warmer than the previous decades. Hence, in the first 28?years of the data, two fires were observed with an area burned greater than 10,000?km2, while there were four in the last 27?years. Correlations between the Palmer Drought Severity Index and the Canadian Drought Code, against both the number of wildfires and the area burned, gave relatively low but in some cases significant correlation values. Special emphasis is given to the fire season of 2004, in which a record of 27,200?km2 burned. These widespread fires were due in large part to the unusual weather situation. Owing to the anticyclonic conditions of the summer of 2004, the composite anomaly of the 500?mb geopotential height showed above normal values. The dominance of a ridge pattern during summer resulted in generally clear skies, high temperatures, and below normal precipitation. Surface observations confirmed this; the summer of 2004 was the warmest and third driest for Interior Alaska in a century of climate observations. The fires lasted throughout the summer and only the snowfalls in September terminated them (at least one regenerated in spring 2005). Smoke from the forest fires affected the air quality. This could be demonstrated by measurements of visibility, fine particle matter, transmissivity of the atmosphere, and CO concentration.  相似文献   

15.
Vegetation fires are the second largest source of greenhouse gas emissions to the atmosphere. The reduction of the climatic impact of these emissions is related to the vegetation susceptibility to fire (fire risk), as well as to the understanding of possible implications of changes in atmospheric circulation on fire risk in the near-future. This study evaluates the environmental susceptibility to fire occurrence based on a Potential Fire Index (PFI). Two climate simulations from the ECHAM5/MPI-OM climate model have been used to calculate the PFI: present day (1980–2000) and an experiment for the end of the twenty-first century (2080–2100). The results indicate that the proposed PFI methodology could properly reproduce the areas with the highest fire incidence under present conditions. Moreover, it was found that under greenhouse warming conditions the PFI foresees an increase in the fire risk area, particularly for the Amazon region. We concluded, furthermore, that changes of vegetation predicted to occur in the future lead to substantial modifications in the magnitude of the PFI, and may potentially extend the length of the fire season due to induced longer drought periods as compared to current conditions.  相似文献   

16.
In this paper we assess the impact of climate change, at a micro-scale for a selection of four sites in New Zealand and Australia. These sites are representative of the key destination ski regions. In contrast to previous work, our work will for the first time, allow for a direct comparison between these two countries and enable both an estimate of the absolute impacts at a given site, as well as the relative impacts between the two countries. This direct comparison is possible because we have used exactly the same snow model, the same 3 global climate models (GCMs) and the same techniques to calibrate the model for all locations. We consider the changes in natural snow at these locations for the 2030–2049 and 2080–2099 time periods, for one mid-range emissions scenario (A1B). This future scenario is compared to simulations of current, 1980–1999, snow at these locations. We did not consider the snowmaking or economic components of the ski industry vulnerability, only the modelled changes in the natural snow component. At our New Zealand sites, our model indicates that by the 2040s there will be on average between 90 % and 102 % of the current maximum snow depth (on 31 August) and by the 2090s this will be on average reduced to between 46 % and 74 %. In Australia, our models estimates that by the 2040s there will be on average between 57 % and 78 % of the current maximum snow depth and by the 2090s this will be on average further reduced to between 21 % and 29 %. In terms of days with snowdepths equal to or exceeding a ski industry useable levels of 0.30 m, at our lowest elevation, and most sensitive sites, we observe a change from 125 days (current) to 99–126 (2040s) and 52–110 (2090s) in New Zealand. In Australia, a reduction from 94 to 155 days (current) to 81–114 (2040s) and 0–75 (2090s) is observed. In each case the changes are highly depended on the GCM used to drive the climate change scenario. While the absolute changes will have direct impacts at each location, so too will the relative changes with respect to future potential Australia–New Zealand tourism flows, and beyond. Our study provides an approach by which other regions or countries with climate sensitive tourism enterprises could assess the relative impacts and therefore the potential wider ranging ramifications with respect to destination attractiveness.  相似文献   

17.
The Yakima River Reservoir system supplies water to ~180,000 irrigated hectares through the operation of five reservoirs with cumulative storage of ~30% mean annual river flow. Runoff is derived mostly from winter precipitation in the Cascade Mountains, much of which is stored as snowpack. Climate change is expected to result in earlier snowmelt runoff and reduced summer flows. Effects of these changes on irrigated agriculture were simulated using a reservoir system model coupled to a hydrological model driven by downscaled scenarios from 20 climate models archived by the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. We find earlier snowmelt results in increased water delivery curtailments. Historically, the basin experienced substantial water shortages in 14% of years. Without adaptations, for IPCC A1B global emission scenarios, water shortages increase to 27% (13% to 49% range) in the 2020s, to 33% in the 2040s, and 68% in the 2080s. For IPCC B1 emissions scenarios, shortages occur in 24% (7% to 54%) of years in the 2020s, 31% in the 2040s and 43% in the 2080s. Historically unprecedented conditions where senior water rights holders suffer shortfalls occur with increasing frequency in both A1B and B1 scenarios. Economic losses include expected annual production declines of 5%–16%, with greater probabilities of operating losses for junior water rights holders.  相似文献   

18.
The annual trace gas emissions from a West African rural region were calculated using direct observations of gas emissions and burning practices, and the findings compared to the guidelines published by the IPCC. This local-scale study was conducted around the village of Dalun in the Northern Region of Ghana, near the regional capital of Tamale. Two types of fires were found in the region – agricultural fires andwildfires. Agricultural fires are intentionally set in order to remove shrub and crop residues; wildfires are mostly ignited by herders to remove inedible grasses and to promote the growth of fresh grass. An agricultural fire is ignited with a fire front moving against the wind (backfire), whereas a wildfire moves with the wind (headfire). Gas emissions (CO2, CO and NO) weremeasured by burning eight experimental plots, simulating both headfires and backfires. A common method of evaluating burning conditions is to calculate modified combustion efficiency (MCE), which expresses the percentage of the trace gases released as CO2. Modified combustion efficiency was95% in the wildfires burned as headfires, but only 90% in the backfires.The burned area in the study region was determined by classifying a SPOT HRV satellite image taken about two months into the dry season. Fires were classified as either old burned areas or new burned areas as determined by the gradient in moisture content in the vegetation from the onset of the dry season. Classified burned areas were subsequently divided into two classes depending on whether the location was in the cultivated area or in the rangeland area, this sub-classification thus indicating whether the fire had been burned as a backfire or headfire. Findings showed that the burned area was 48% of the total region, and that the ratio of lowland wildfiresto agricultural fires was 3:1. The net trace gas release from the classified vegetation burnings were extrapolated to 26–46×108 gCO2, 78–302×106 g CO,17–156×105 g CH4,16–168×105 g NMHC and 11–72×103 NOx. Calculation of the emissionsusing proposed IPCC default values on burned area and average biomass resulted in a net emission 5 to 10 times higher than the measured emission values. It was found that the main reason for this discrepancy was not the emission factorsused by the IPCC, but an exaggerated fuel load estimate.  相似文献   

19.
Abstract

A þrst climate simulation performed with the novel Canadian Regional Climate Model (CRCM) is presented. The CRCM is based on fully elastic non‐hydrostatic þeld equations, which are solved with an efþcient semi‐implicit semi‐Lagrangian (SISL) marching algorithm, and on the parametrization package of subgrid‐scale physical effects of the second‐generation Canadian Global Climate Model (GCMII). Two 5‐year integrations of the CRCM nested with GCMII simulated data as lateral boundary conditions are made for conditions corresponding to current and doubled CO2 scenarios. For these simulations the CRCM used a grid size of 45 km on a polar‐stereographic projection, 20 scaled‐height levels and a time step of 15 min; the nesting GCMII has a spectral truncation of T32, 10 hybrid‐pressure levels and a time step of 20 min. These simulations serve to document: (1) the suitability of the SISL numerical scheme for regional climate modelling, (2) the use of GCMII physics at much higher resolution than in the nesting model, (3) the ability of the CRCM to add realistic regional‐scale climate information to global model simulations, and (4) the climate of the CRCM compared to that of GCMII under two greenhouse gases (GHG) scenarios.  相似文献   

20.
Climate change is projected to result, on average, in earlier snowmelt and reduced summer flows in the Pacific Northwest, patterns not well represented in historical observations used in water planning. We evaluate the sensitivities of water supply systems in the Puget Sound basin cities of Everett, Seattle, and Tacoma to historical and projected future streamflow variability and water demands. We simulate streamflow for the 2020s, 2040s, and 2080s using the distributed hydrology–soil–vegetation model (DHSVM), driven by downscaled ensembles of climate simulations archived from the 2007 IPCC Fourth Assessment Report. We use these streamflow predictions as inputs to reservoir system models for the three water supply systems. Over the next century, under average conditions all systems are projected to experience declines and eventual disappearance of the springtime snowmelt peak. How these shifts affect management depends on physical characteristics, operating objectives, and the adaptive capacity of each system. Without adaptations, average seasonal drawdown of reservoir storage is projected to increase in all three systems throughout the 21st century. Reliability of all systems in the absence of demand increases is robust through the 2020s however, and remains above 98% for Seattle and Everett in the 2040s and 2080s. With demand increases, however, reliability of the systems in their current configurations and with current operating policies progressively declines through the century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号