首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We present a millennial long dendroclimatic reconstruction of spring/summer precipitation for southern-central England. Previous research identified a significant moisture stress signal in ring-width data measured from oak trees growing in southern England. In this study, we build upon this earlier work, specifically targeting south-central England, to derive a well replicated oak ring-width composite chronology using both living and historical material. The data-set includes 352 living trees (AD 1629–2009) and 1540 individual historical series (AD 663–1925). The period expressed by at least 50 trees in any year is AD 980–2009. Calibration experiments identify the optimal seasonal predictand target as March–July precipitation (1901–2007: r2 = 0.33). However, comparison with the long Kew Gardens precipitation record indicates a weakening in tree-growth/climate response from ~1800 to 1920 which we speculate may be related to smoke and sulphur dioxide (SO2) emissions at that time which may have also contributed to a decrease in tree productivity. The time-series derived using the regional curve standardisation method to capture lower frequency information shows a mediaeval period with alternating multi-decade-long dry and wet periods, with AD 1153–1172 being the wettest reconstructed 20-year period in the whole record. Drier conditions are prevalent from ~1300 to the early sixteenth century followed by a period of increasing precipitation levels. The most recent four centuries of the record appear similar to the mediaeval period with multiple decade-long dry and wet periods. The late twentieth century is the second reconstructed wettest period. These centennial hydroclimatic trends are in broad agreement with independent regional scale hydroclimatic reconstructions from tree-ring (East Anglia), historical, speleothem and peat water level proxy archives in the United Kingdom and appear coupled with reconstructed sea surface temperature changes in the North Atlantic which in turn influence the Atlantic meridional overturning circulation and westerly airflow across the UK.  相似文献   

2.
Large trees (>76 cm breast-height diameter) are vital components of Sierra Nevada/Cascades mixed-conifer ecosystems because of their fire resistance, ability to sequester large amounts of carbon, and role as preferred habitat for sensitive species such as the California spotted owl. To investigate the likely performance of large trees in a rapidly changing climate, we analyzed growth rings of five conifer species against 20th century climate trends from local weather stations. Over the local station period of record, there were no temporal trends in precipitation, but maximum temperatures increased by 0.10 to 0.13 °C/decade (summer and autumn), and minimum temperatures increased by 0.11 to 0.19 °C/decade in all seasons. All species responded positively to precipitation, but more variation was explained by a significant positive response to minimum winter temperatures. High maximum summer temperature adversely affected growth of two species, and maximum spring temperatures in the year prior to ring formation were negatively associated with growth of one species. The strong coherent response to increasing minimum temperatures bodes well for growth of large trees in Sierra/Cascades region mixed conifer forest under continued climatic warming, but these trees will still be under threat by the increased fire intensity that is a indirect effect of warming.  相似文献   

3.
Temperature reconstructions for recent centuries provide a historical context for the warming over the twentieth century. We reconstruct annual averaged surface temperatures of the past 400?years on hemispherical and global scale from glacier length fluctuations. We use the glacier length records of 308 glaciers. The reconstruction is a temperature proxy with decadal resolution that is completely independent of other temperature records. Temperatures are derived from glacier length changes using a linear response equation and an analytical glacier model that is calibrated on numerical model results. The global and hemispherical temperatures reconstructed from glacier length fluctuations are in good agreement with the instrumental record of the last century. Furthermore our results agree with existing multi-proxy reconstructions of temperature in the pre-instrumental period. The temperature record obtained from glacier fluctuations confirms the pronounced warming of the twentieth century, giving a global cumulative warming of 0.94?±?0.31?K over the period 1830–2000 and a cumulative warming of 0.84?±?0.35?K over the period 1600–2000.  相似文献   

4.
Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950–1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming.  相似文献   

5.
Evidence is presented of how Pinus halepensis Miller from dry habitats at <300 m elevation of four Greek island regions have responded to climatic conditions of the last two centuries. We compared historical periods of low growth due to low precipitation with the recent period of significant precipitation decline. In all cases trees?? growth patterns across the twentieth century were consistent with trends in annual (rather than seasonal) precipitation, with lowest values in both precipitation and radial growth during the last two decades of the twentieth century, the worst conditions for tree growth in more than 200 years. The data are compared with trends across different vegetation belts of the northern Mediterranean basin. Drought related tree mortality in Greece in 2000 and 2007 coincided with the most severe fire outbreaks on record. IPCC WG I (2007) climate scenarios for the Mediterranean suggest a further decline in precipitation, particularly in the eastern regions. Should this occur, growth reduction in trees, tree mortality and damage from forest fires are likely to become more severe.  相似文献   

6.
基于历史文献重建的近2000年中国温度变化比较研究   总被引:2,自引:0,他引:2  
文中对不同学者利用不同来源中国历史文献资料重建的温度变化代用序列进行了比对,分析了同一地区不同序列之间及不同地区间序列的异同,以及造成这些异同的主要原因。结果表明:(1)不同学者重建的同一地区温度(或冷暖)变化序列具有较高的相似性;不同学者所估计的30 a平均温度相对变幅完全一致(即在99.9%置信水平下,二者通过无显著性差别的检验)的时段平均占所有时段的73.4%,还有8.6%的时段虽在幅度大小上有差异但冷暖定性一致,二者共计占82%。(2)不同地区间的温度变化序列也具有较高的相关性,且重建区域相距越近其相关系数也越高,序列的相似程度也越大;而不同学者所选择的重建方法与代用指标不同并不影响不同地区之间序列的相似程度,说明不同地区序列的不一致应是由于地区的气候变化差异造成的。(3)虽然不同学者所估计的中国过去千年以上的温度变化趋势及波动幅度等存在一定差异,但各家所揭示的中国东部过去2000年主要冷暖阶段的出现时间则基本一致。这些结果进一步说明:以前学术界对各家序列差异的认识可能并没有或很少考虑地区间气候变化的差异,因而夸大了不同学者因重建方法与原始证据不同而造成的重建结果差异,这是不客观的。  相似文献   

7.
由于分布广泛、分辨率高、定年准确和气候敏感性好等原因,树木年轮在重建过去区域、半球甚至全球气候环境变化中扮演着重要角色。天山地处中亚干旱区,气候变化波动大,对全球变化响应敏感,植物生长的干旱胁迫作用强烈,天山山区分布有大量雪岭云杉和西伯利亚落叶松等长龄且对气候敏感的针叶树种,因此天山山区是树轮气候研究的理想区域。天山山区树轮气候研究始于20世纪70年代,尤其是近10 a有了长足的进步,有关天山山区树轮气候研究已经在国际上有一定影响。本文通过综述国内外对天山山区树轮气候研究的现状和进展,总结了近200 a基于树轮资料的天山山区较为一致的气候变化规律,并为进一步开展天山山区树轮气候研究提出建议。天山山区未来树木年轮气候学研究应在开展大量不同区域树木年轮气候学重建基础上,尝试理解树木径向生长对气候的响应机理研究,同时选用不同数理方法和多树木年轮指标进行长时间尺度和大空间范围重建工作,并讨论中亚干旱区过去千年气候变化的影响机制。  相似文献   

8.
Based on four tree-ring chronologies which was analyscd with appropriate collection and accurate dating in the middle Tibetan Plateau,an essential procedure on reconstruction of past climate has been pointed out in this paper.First,the response function of each dendrochronology has been built and used to estimate how ring-width growth responds to variations in monthly climatic change.Second,the climate factors which could be produced with different tree-ring series have been selected.Then,the transfer function equation,including a new set of orthogonal variables,can be used to reconstruct local past temperature or precipitation.It should be emphasized that prior growth has been considered in the relationship between climate factor and tree-ring chronology,Besides,some different periods for calibration and verification have been divided.And some statistics and other kinds of proxy data have been adopted as test approaches.As a result,the variations of air temperature during the last 600 years and precipitation during the last 340 years were reconstructed by combining the same types of tree-ring series in the middle Tibet.  相似文献   

9.
Tree-ring reconstructed summer Palmer Drought Severity Indices (PDSI) are used to identify decadal droughts more severe and prolonged than any witnessed during the instrumental period. These “megadroughts” are identified at two spatial scales, the North American continental scale (exclusive of Alaska and boreal Canada) and at the sub-continental scale over western North America. Intense decadal droughts have had significant environmental and socioeconomic impacts, as is illustrated with historical information. Only one prolonged continent-wide megadrought during the past 500 years exceeded the decadal droughts witnessed during the instrumental period, but three megadroughts occurred over the western sector of North America from a.d. 1300 to 1900. The early 20th century pluvial appears to have been unmatched at either the continental or sub-continental scale during the past 500 to 700 years. The decadal droughts of the 20th century, and the reconstructed megadroughts during the six previous centuries, all covered large sectors of western North America and in some cases extended into the eastern United States. All of these persistent decadal droughts included shorter duration cells of regional drought (sub-decadal  ≈  6 years), most of which resemble the regional patterns of drought identified with monthly and annual data during the 20th century. These well-known regional drought patterns are also characterized by unique monthly precipitation climatologies. Intense sub-decadal drought shifted among these drought regions during the modern and reconstructed multi-year droughts, which prolonged large-scale drought and resulted in the regimes of megadrought.  相似文献   

10.
Recently a divergence between tree-ring parameters from temperature-limited environments and temperature records has been observed worldwide but comprehensive explanations are still lacking. From a dendroclimatic analysis performed on a high-altitude tree-ring network of Pinus cembra (L.) in the Central Italian Alps we found that site aspect influences non-stationary growth-climate relationships over time. A general increasing divergence between ring width and the summer temperature record (J–A) has been observed especially for chronologies from SW-facing slopes, whereas chronologies from N-facing sites showed stable relationships over time. The monthly analysis revealed that the decrease in sensitivity was mostly accounted for by the changes in the relationships with June temperature (decreasing correlations especially for S- and W-facing site chronologies), whereas trees from N-facing sites showed an increasing sensitivity to July temperatures. Our data suggest that at high altitudes, low temperatures at the beginning of the growing season no longer limit growth. We also found that our temperature-sensitive trees did not linearly respond in radial growth to the extreme heat event of summer 2003, and formed an annual ring of average width, resulting in a strong divergence from the temperature record. Our findings underline the importance of site ecology for tree-ring based climate reconstructions using temperature-sensitive ring-width chronologies, and may help in solving the ‘divergence problem’.  相似文献   

11.
The ten-year mean anomalies of seasonal and annual temperatures were reconstructed on the basis ofhistorical documents of cold events such as severe snowing and freezing of lakes and rivers.The assorted eventswere calibrated with instrumental observations of temperature and transformed into ten-year mean anomalies.The reconstructed temperature series show predominance of cold climate in the first four hundred years of theperiod examined.The centenary seasonal temperature anomalies for the 16th to the 19th century vary between-0.1 and -0.7K.The coldest decades concentrated in the middle of 17th and 19th centuries.It provided theirrefutable evidence of the occurrence of the Little Ice Age in China.The minima of ten-year mean temperatureanomalies ranged about -1.5 to 2.0K in spring and winter.Meanwhile,the variance of ten-year mean tempera-ture was increased by more than 20% in comparison to the 20th century.  相似文献   

12.
A new set of tree-ring records from the Andes of northern Patagonia, Argentina (41° S) was used to evaluate recent (i.e., last 250 years) regional trends in tree growth at upper treeline. Fifteen tree-ring chronologies from 1200 to 1750 m elevation were developed for Nothofagus pumilio, the dominant subalpine species. Samples were collected along three elevational transects located along the steep west-to-east precipitation gradient from the main Cordillera (mean annual precipitation >4000 mm) to an eastern outlier of the Andes (mean annual precipitation >2000 mm). Ring-width variation in higher elevation tree-ring records from the main Cordillera is mainly related to changes in temperature and precipitation during spring and summer. However, the response to climatic variation is also influenced by local site factors of elevation and exposure. Based on the relationships between Nothofagus growth and climate, we reconstructed changes in snow cover duration in late spring and variations in mean annual temperature since A.D. 1750. Abrupt interannual changes in the mean annual temperature reconstruction are associated with strong to very strong El Niño-Southern Oscillation events. At upper treeline, tree growth since 1977 has been anomalously high. A sharp rise in global average tropospheric temperatures has been recorded since the mid-1970s in response to an enhanced tropical hydrologic cycle due to an increase in temperature of the tropical Pacific. Temperatures in northern Patagonia have been anomalously high throughout the 1980s, which is consistent with positive temperature anomalies in the tropical Pacific and along the western coast of the Americas at c.a. 40° S latitude. Our 250-year temperature reconstruction indicates that although the persistently high temperatures of the 1980s are uncommon during this period, they are not unprecedented. Tropical climatic episodes similar to that observed during the 1980s may have occurred in the recent past under pre-industrial carbon dioxide levels.  相似文献   

13.
Reconstructing the long-term series of the East Asian summer monsoon (EASM) indices may help understand long-term variability of EASM and its associations with precipitation. In this study, the summer middle?Cupper tropospheric temperature over the Asian?CNorth Pacific sector is reconstructed from sea level pressure during the past 150?years, and then an atmospheric thermal contrast between Asia and the North Pacific, called the Asian?CPacific Oscillation (APO) index, is calculated from the reconstructed temperature. The results show that the APO phenomenon may occur in the reconstructed temperature fields, and its index has a significant positive/negative correlation with SST over the extratropical North Pacific/the tropical central?Ceastern Pacific in the past 150?years. The reconstructed summer APO index shows inter-decadal variability, with a positive phase in the 1870?C1890s, the 1920s, and the 1940?C1970s, indicating a stronger thermal contrast between Asia and the North Pacific, and with a negative phase in the 1860s, the 1900?C1910s, and the 1980?C1990s, indicating a weaker thermal contrast. Corresponding to a higher APO index in earlier decades of the twentieth century, there are more rainfall to the south of the Yangtze River and over North China and less rainfall over the Huaihe River valley. In the recent decades, however, more- and less-rain belts shifted southwards when the APO index is higher. During 1850?C1900, the reconstructed APO index also showed a significant positive correlation with precipitation in some regions of North China.  相似文献   

14.
A portion of the debate about climate reconstructions of the past millennium, and in particular about the well-known Mann-Bradley-Hughes (“MBH” 1998, 1999) reconstructions, has become disconnected from the goal of understanding natural climate variability. Here, we reflect on what can be learned from recent scientific exchanges and identify important challenges that remain to be addressed openly and productively by the community. One challenge arises from the real, underlying trend in temperatures during the instrumental period. This trend can affect regression-based reconstruction performance in cases where the calibration period does not appropriately cover the range of conditions encountered during the reconstruction. However, because it is tied to a unique spatial pattern driven by change in radiative balance, the trend cannot simply be removed in the method of climate field reconstruction used by MBH on the statistical argument of preserving degrees of freedom. More appropriately, the influence from the trend can be taken into account in some methods of significance testing. We illustrate these considerations as they apply to the MBH reconstruction and show that it remains robust back to AD 1450, and given other empirical information also back to AD 1000. However, there is now a need to move beyond hemispheric average temperatures and to focus instead on resolving climate variability at the socially more relevant regional scale.  相似文献   

15.
We analysed 565 increment cores from 325 Himalayan cedar [Cedrus deodara (Roxb.) G. Don] trees growing at 13 moisture-stressed, widely distributed sites in the western Himalayan region. We found a strong positive relationship between our tree-ring width chronologies and spring precipitation which enabled us to reconstruct precipitation back to a.d. 1560. This reconstruction is so far the longest in this region. The calibration model explains 40% variance in the instrumental data (1953–1997). The most striking feature of the reconstruction is the unprecedented increase in precipitation during the late twentieth century relative to the past 438 years. Both wet and dry springs occurred during the Little Ice Age. A 10-year running mean showed that the driest period occurred in the seventeenth century while the wettest period occurred in the twentieth century. Spectral analysis of the reconstructed series indicated a dominant 2-year periodicity.  相似文献   

16.
Tree-ring records are a valuable source of information for understanding long-term, regional-scale drought changes. In this study, a tree ring width chronology spanning the last 330?years (A.D. 1681–2010) is developed for the northern fringe of the Asian summer monsoon in north central China based on tree ring widths of the Chinese pine (Pinus tabulaeformis) at three sites in the Hasi Mountain (HSM). An annual (running from the previous August to the present July) Palmer Drought Severity Index (PDSI) series is reconstructed for the period A.D. 1698 to 2010 using a linear regression model. This reconstruction accounts for 49?% of the actual PDSI variance during the calibration period (A.D.1951–2005). During the last past 330?years, the year 1759 drought was the most severe and the 1926–1932 drought was the most long-lasting. These drought episodes resulted in huge economic losses and severe famine. Similar periods of drought are also found in the Great Bend of the Yellow River region, northeastern Tibetan Plateau and northern China. Our drought reconstruction is consistent with the dry-wet index derived from historical documents for the Great Bend of the Yellow River region for the last three centuries, revealing that our annual PDSI reconstruction reflects broad-scale climate anomalies and represents drought variations in the northern fringe of the Asian summer monsoon. The PDSI reconstruction correlates significantly with sea surface temperature (SST) in the eastern equatorial Pacific Ocean and northern Indian Ocean at an annual timescale, implying that El Ni?o-Southern Oscillation and the Indian monsoon might be influencing drought variability in the study area. Some extremely dry years of 1707, 1764, 1837, 1854, 1878, 1884, 1926 and 1932 coincided with major El Ni?o events in historical times. The decadal-scale variability is linked to Pacific Decadal Oscillation (PDO) and SST variations in the Atlantic Ocean. The observed recent tree growth reduction is unusual when viewed from a long-term perspective.  相似文献   

17.
EOF方法恢复历史气候要素场的研究   总被引:3,自引:1,他引:3  
张万诚  严华生 《高原气象》1994,13(4):479-484
本文用自然正交展开,通过对典型场所对应的时间系数的恢复,达到了恢复气候要素场的目的,利用云南6个站已有的5月雨量资料,恢复出19个站的5月雨量场资料,检验表明,所恢复的记录在一定程度上重视了特殊年份降水量场的特征。  相似文献   

18.
Europe has been warming over the past 30?years. In particular all seasonal temperature records have been broken since 2003, which altered socio-economic and environmental systems. Since we expect this trend in both mean and extreme temperatures to continue along the twenty first century under enhanced radiative forcing, it is crucial to understand the underlying mechanisms of such climate variations to help in considering adaptation or mitigation strategies to reduce the impacts of a warmer climate. From a statistical analysis we show that the inter-annual variability of European seasonal temperatures can be reconstructed from North-Atlantic atmospheric circulation only, but not their recent trends and extreme seasons. Adding North-Atlantic sea-surface temperature (SST) as a predictor helps improving the reconstruction, especially in autumn and winter. Sensitivity experiments with the MM5 regional model over 2003?C2007 suggest that the anomalous SST enhance European land temperatures through the upper-air advection of heat and water vapor, interacting with radiative fluxes over the continent. This mechanism is pronounced in autumn and winter, where estimates of SST influence as obtained from MM5 are in agreement with those obtained from statistical regressions. We find a lesser SST influence in spring and summer, where local surface and radiative feedbacks are the main amplifiers of recent extremes.  相似文献   

19.
Two European temperature reconstructions for the past half-millennium, January-to-April air temperature for Stockholm (Sweden) and seasonal temperature for a Central European region, both derived from the analysis of documentary sources and long instrumental records, are compared with the output of climate simulations with the model ECHO-G. The analysis is complemented by comparisons with the long (early)-instrumental record of Central England Temperature (CET). Both approaches to study past climates (simulations and reconstructions) are burdened with uncertainties. The main objective of this comparative analysis is to identify robust features and weaknesses in each method which may help to improve models and reconstruction methods. The results indicate a general agreement between simulations obtained with temporally changing external forcings and the reconstructed Stockholm and CET records for the multi-centennial temperature trend over the recent centuries, which is not reproduced in a control simulation. This trend is likely due to the long-term change in external forcing. Additionally, the Stockholm reconstruction and the CET record also show a clear multi-decadal warm episode peaking around AD 1730, which is absent in the simulations. Neither the reconstruction uncertainties nor the model internal climate variability can easily explain this difference. Regarding the interannual variability, the Stockholm series displays, in some periods, higher amplitudes than the simulations but these differences are within the statistical uncertainty and further decrease if output from a regional model driven by the global model is used. The long-term trend of the CET series agrees less well with the simulations. The reconstructed temperature displays, for all seasons, a smaller difference between the present climate and past centuries than is seen in the simulations. Possible reasons for these differences may be related to a limitation of the traditional ‘indexing’ technique for converting documentary evidence to temperature values to capture long-term climate changes, because the documents often reflect temperatures relative to the contemporary authors’ own perception of what constituted ‘normal’ conditions. By contrast, the amplitude of the simulated and reconstructed inter-annual variability agrees rather well.  相似文献   

20.
采用青海两个树木年轮年表重建局地过去降水的初步分析   总被引:3,自引:1,他引:3  
本文依据青海乌兰、班玛两个经过精确定年的树木年轮年表,通过响应函数计算,求得逐月的气候因素对轮宽生长的贡献。在贡献显著的时区内,经由相关计算确立最佳重建时段,选取预报因子,再用逐步回归方法建立方程来重建过去气候。分析表明在重建时段内的两地降水变化,均有明显的多雨期和少雨期,同时存在显著的周期现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号