首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Temporal changes in the vertical column contents of the meteoric metals Mg+, Mg, Fe+, and Fe have been measured at ∼1030 LT for all longitudes in the latitude zone of 10°N–30°N during November 1996, encompassing the period of the Leonid meteor shower. The column contents were obtained using UV radiances measured by the GOME instrument on the ERS-2 satellite. Throughout the month there are several interesting prominent content enhancements of all species. After the Leonid shower peak on 17 November the ion species contents increase before the contents of the neutrals. However, it is difficult to confirm that this is a shower effect given the other similar variations seen earlier in the contents and in the sporadic meteor flux enhancements. The peaks in visual meteors on 17 November are not observed in the total metal column amounts. The GOME instrument has been in continuous operation since April 1995 and is an excellent resource for studying the temporal behavior of meteoric metals on a global scale.  相似文献   

2.
This study uses stable isotopes and major ions to examine the seasonal evolution of penitentes on the surface of Tapado Glacier, in the Norte Chico region of the Chilean Andes. A snow pit was sampled in November 2011, and penitentes were sampled during the summer (December 2011 and January 2012). The major ion load of the winter snowpack is dominated by Ca2+ (60%), SO42? (16%) and NO3? (13%), and there is little influence from marine air masses at the site, with most SO42?, Mg2+, Ca2+ and Na+, derived from non‐sea salt sources. During the early ablation season we observe increases in stable isotope ratios and major ion concentrations (particularly lithic ions Na+, Mg2+ and Ca2+) in the upper reaches of penitentes, which is attributed to sublimation and the aeolian deposition of dust particles. In the late‐summer, melt replaces sublimation as the dominant ablation process and results in smoothing of the stable isotope profile and the elution of major ions within the penitente snow and ice matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The expression for the increment of instability and decrement of diffusion damping of gradient drift waves for ionospheric altitudes above the F 2 layer maximum is obtained. The gradient drift instability is used to interpret the observations of spread F in the region of large-scale horizontal irregularities of the electron density. Two types of such irregularities observed on board the Intercosmos-19 (IC-19) satellite in the region of low latitudes (a peak of the density in the dusk ionosphere and a trough of the density in the dawn ionosphere) are considered. It is shown that the observed gradients of the density and electric field values in the dawn and dusk ionospheric sectors are quite sufficient for the instability development criterion to be satisfied in both considered cases.  相似文献   

4.
We used hydrochemistry and environmental isotope data (δ18O, δD, tritium, and 14C) to investigate the characteristics of river water, groundwater, and groundwater recharge in China's Heihe River basin. The river water and groundwater could be characterized as Ca2+? Mg2+? HCO3?? SO42? and Na+? Mg2+? SO42?? Cl? types, respectively. Hydrogeochemical modelling using PHREEQC software revealed that the main hydrogeochemical processes are dissolution (except for gypsum and anhydrite) along groundwater flow paths from the upper to middle Heihe reaches. Towards the lower reaches, dolomite and calcite tend to precipitate. The isotopic data for most of the river water and groundwater lie on the global meteoric water line (GMWL) or between the GMWL and the meteoric water line in northwestern China, indicating weak evaporation. No direct relationship existed between recharge and discharge of groundwater in the middle and lower reaches based on the isotope ratios, d‐excess, and 14C values. On the basis of tritium in precipitation and by adopting an exponential piston‐flow model, we evaluated the mean residence time of shallow groundwater with high tritium activities, which was around 50 years (a). Furthermore, based on the several popular models, it is calculated that the deep groundwaters in piedmont alluvial fan zone of the middle reaches and in southern part of the lower reaches are modern water, whereas the deep groundwaters in the edge of the middle reaches and around Juyan Lake in the lower reaches of Heihe river basin are old water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The polar wind is an ambipolar outflow of thermal plasma from the high-latitude ionosphere to the magnetosphere, and it primarily consists of H+, He+ and O+ ions and electrons. Statistical and episodic studies based primarily on ion composition observations on the ISIS-2, DE-1, Akebono and Polar satellites over the past four decades have confirmed the existence of the polar wind. These observations spanned the altitude range from 1000 to ∼50,500 km, and revealed several important features in the polar wind that are unexpected from “classical” polar wind theories. These include the day–night asymmetry in polar wind velocity, which is 1.5–2.0 times larger on the dayside; appreciable O+ flow at high altitudes, where the velocity at 5000–10,000 km is of 1–4 km/s; and significant electron temperature anisotropy in the sunlit polar wind, in which the upward-to-downward electron temperature ratio is 1.5–2. These features are attributable to a number of “non-classical” polar wind ion acceleration mechanisms resulting from strong ionospheric convection, enhanced electron and ion temperatures, and escaping atmospheric photoelectrons. The observed polar wind has an averaged ion temperature of ∼0.2–0.3 eV, and a rate of ion velocity increase with altitude that correlates strongly with electron temperature and is greatest at low altitudes (<4000 km for H+). The rate of velocity increase below 4000 km is larger at solar minimum than at solar maximum. Above 4000 km, the reverse is the case. This suggests that the dominant polar wind ion acceleration process may be different at low and high altitudes, respectively. At a given altitude, the polar wind velocity is highly variable, and is on average largest for H+ and smallest for O+. Near solar maximum, H+, He+, and O+ ions typically reach a velocity of 1 km/s near 2000, 3000, and 6000 km, respectively, and velocities of 12, 7, and 4 km/s, respectively, at 10,000 km altitude. Near solar minimum, the velocity of all three species is smaller at high altitudes. Observationally it is not always possible to unambiguously separate an energized “non-polar-wind” ion such as a low-energy “cleft ion fountain” ion that has convected into a polar wind flux tube from an energized “polar-wind” ion that is accelerated locally by “non-classical” polar-wind ion acceleration mechanisms. Significant questions remain on the relative contribution between the cleft ion fountain, auroral bulk upflow, and the topside polar-cap ionosphere to the O+ polar wind population at high altitudes, the effect of positive spacecraft charging on the lowest-energy component of the H+ polar wind population, and the relative importance of the various classical and non-classical ion acceleration mechanisms. These questions pose several challenges in future polar wind observations: These include measurement of the lowest-energy component in the presence of positive spacecraft potential, definitive determination and if possible active control of the spacecraft potential, definitive discrimination between polar wind and other inter-mixed thermal ion populations, measurement of the three-dimensional ion drift velocity vector and the parallel and perpendicular ion temperatures or the detailed three-dimensional velocity distribution function, and resolution of He+ and other minor ion species in the polar wind population.  相似文献   

6.
A mathematical model of the middle and high latitude ionosphere   总被引:5,自引:0,他引:5  
  相似文献   

7.
TC-1在近磁尾观测到地向流的偏转   总被引:1,自引:0,他引:1       下载免费PDF全文
使用TC-1卫星在2004年到2007年磁尾探测数据,将以往高速流的研究拓宽到较低的速度,统计分析其从-13.4RE到-5RE地心距离内的空间演化.研究发现:(1)在向着地球运动的过程中,地向流发生率在日地连线附近减小,但在晨昏两翼的发生率增加,且在黄昏侧的发生率最高;这表明地向流在运动到近地时向着晨昏两翼偏转.(2)越靠近地球,流速V和Vx越小,Vy和Vz的变化幅度较小并且具有明显的晨昏不对称性;所以地向流在近地运动过程中,不仅在晨昏方向上偏转,而且在南北方向上偏转.(3)地向流期间,等离子体密度整体偏小;但是随地心距离的减小,密度整体上逐步增加.(4)平行和垂直于磁场的流速具有明显的晨昏不对称性.在黎明侧的平行流速比黄昏侧大,在黄昏侧的垂直流速比黎明侧大.鉴于较大的垂直流速易触发与电流中断关系密切的不稳定性,我们推测电流中断更容易出现在黄昏侧.(5)除个别位置处的热压和磁压相当外,磁压在总压中一直占据主导地位.日地连线附近的总压较大,晨昏两翼处的总压相对较小;从而在晨昏向上产生较大的压力梯度,导致地向流在晨昏两翼偏转和发生率增大.在晨昏两翼,距离地球较近的位置处观测到了较小的压力;而在日地连线附近,距离地球较远的位置才可以观测到较小的压力;压力分布的这个统计特征说明过去事例研究中电流中断出现在不同的位置可能是由近地磁尾的压力分布造成的.  相似文献   

8.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Liquid conductivity (EC) measurement was conducted for the samples collected from several snow pits and ice cores over the Qinghai-Xizang (Tibet) Plateau, with their time range covering seasonal, decadal and centennial scales. Unlike the previous attention mostly focused on the acidity (H+) responding to the solid conductance (ECM) of glacial ice, we introduce the alkalinity (OH) of snow and ice to show how it responds to EC. Strong linear relationship was established between EC and OH for these snow pits and ice cores. Positive correlation is also established between EC and major cations (Ca2+, Mg2+, Na+ and K+). Since the cations are known as the proxies for the intensity of mineral dust influx onto glaciers of the northern Qinghai-Xizang Plateau, we believe that EC could be used as an indicator for the history of dust input in deep ice core study. In fact, records in Guliya ice core since the Little Ice Age (LIA) indicate that dust load in glacier may depend on the combination of temperature and humidity. “Cold-dry” combination favors the dust arising, and results in higher EC and OH values, while “warm-wet” combination prevents dust form and EC and OH values are lower. In the past century, with the atmospheric warming and precipitation increasing over the northern plateau, which means an atmospheric condition of dust decreasing, both EC and OH displayed rapid decline.  相似文献   

10.
Characteristics of ion and electron precipitations in the dawn and dusk sectors are investigated by DMSP F6 and F7 satellite observations. It is shown that in the dusk sector the positions of electron and ion precipitation boundaries are nearly coincident for all levels of magnetic activity; however the latitudinal distribution of energy fluxes indicates that the positions of electron and ion precipitation maxima are spatially separated. Maximum energy fluxes of ions is observed at the equatorial precipitation boundary, while those of electrons at the poleward one. In the dawn sector, the electron precipitation region is 3°–4° wider than that of ions. The isotropy boundary in the dusk sector is located in the region of diffuse precipitation (DAZ) near its poleward boundary for all levels of magnetic activity, while in the dawn sector it falls in the region of structured precipitations (AOP). Electron precipitations are dominating in the dawn sector. Here in the region of diffuse precipitation (DAZ), the ion energy fluxes Fi make less than 5% as compared to the electron energy flux Fe. In the region of structured precipitations (AOP), the portion of Fi decreases with increasing magnetic activity from ~10–20% for AL ≈ -100 nT to <5% for AL ≈ -1000 nT. As for the dusk sector, in the AOP region, electron precipitations are dominating as well, while in the DAZ region the ion energy fluxes are significant. In the 1500–1800 MLT sector, the ratio Fi/Fe increases from ~0.7 to ~3.0 with AL changing from -100 nT to -1000 nT.  相似文献   

11.
The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95·5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late‐lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion‐rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0·25 m of unsaturated soil. The Na+ and Cl? were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt‐water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late‐lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in‐stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Cusp geometry in MHD simulations   总被引:2,自引:0,他引:2  
The MHD simulations described here show that the latitude of the high-altitude cusp decreases as the IMF swings from North to South, that there is a pronounced dawn–dusk asymmetry at high-altitude associated with a dawn–dusk component of the IMF, and that at the same time there is also a pronounced dawn–dusk asymmetry at low-altitude. The simulations generate a feature that represents what has been called the cleft. It appears as a tail (when the IMF has a By component) attached to the cusp, extending either toward the dawn flank or the dusk flank depending on the dawn–dusk orientation of the IMF. This one-sided cleft connects the cusp to the magnetospheric sash. We compare cusp geometry predicted by MHD simulations against published observations based on Hawkeye and DMSP data. Regarding the high-altitude predictions, the comparisons are not definitive, mainly because the observations are incomplete or mutually inconsistent. Regarding the low-altitude prediction of a strong dawn–dusk asymmetry, the observations are unambiguous and are in good qualitative agreement with the prediction.  相似文献   

13.
Long-term data (2003–2015) on meltwater chemistry, mass balance and discharge of a benchmark glacier (Chhota Shigri Glacier, India) were studied to determine any association between these variables. To infer the factors governing the alteration of chemical weathering processes in glacierized basins, multi-annual records of the hydrochemical indices (Ca2++Mg2+/Na++K+) and the C-ratio were also examined. A succession of negative mass balance years has resulted in a decline in solute concentrations in the runoff, as discharge has increased. The (Ca2++Mg2+/Na++K+) and C-ratio are highest during periods of negative annual mass balance, when the spatial extent of the channelized drainage system increases. Conversely, these ratios are lowest in positive mass balance years, when the spatial extent of the channelized drainage system decreases, and chemical weathering in the distributed drainage system becomes more dominant. This paper is the first to show the inter-annual linkages between meltwater chemistry, mass balance and discharge for a valley glacier.  相似文献   

14.
Water and nutrient fluxes were studied during a 12-month period in an alerce (Fitzroya cupressoides) forest, located in a remote site at the Cordillera de la Costa (40°05′S) in southern Chile. Measurements of precipitation, throughfall, stemflow, effective precipitation, soil infiltration and stream flow were carried out in an experimental, small watershed. Simultaneously, monthly water samples were collected to determine the concentrations and transport of organic-N, NO3-N, total-P, K+, Ca2+, Na+ and Mg2+ in all levels of forest. Concentration of organic-N, NO3-N, total-P and K+ showed a clear pattern of enrichment in the throughfall, stemflow, effective precipitation and soil infiltration. For Ca2+ and Mg2+, enrichment was observed in the effective precipitation, soil infiltration and stream flow. Annual transport of K+, Na+, Ca2+ and Mg2+ showed that the amounts exported from the forest via stream flow (K+=0·95, Na+=32·44, Ca2+=8·76 and Mg2+=7·16 kg ha−1 yr−1) are less than the inputs via precipitation (K+=6·39, Na+=40·99, Ca2+=15·13 and Mg2+=7·61 kg ha−1 yr−1). The amounts of organic-N and NO3-N exported via stream flow (organic-N=1·04 and No3-N=3·06 kg ha−1 yr−1) were relatively small; however, they represented greater amounts than the inputs via precipitation (organic-N=0·74 and NO3-N=0·97 kg ha−1 yr−1), because of the great contribution of this element in the superficial soil horizon, where the processes of decomposition of organic material, mineralization and immobilization of the nutrients occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
This study investigates the influence of Ca2+ and Mg2+ on the removal of F? by magnesium potassium phosphate (MPP) from water. The kinetic experiments reveal that the F? concentration decreased from 3.5 to 3.31 mg L?1 in a single (F?) system and to 1.45 mg L?1 in a ternary system (F?, Ca2+, and Mg2+) after 1 min, respectively. Thus, the F? removal efficiencies are found to increase by about 53% with the co‐active effect of Ca2+ and Mg2+ in the solution. Moreover, Ca2+ and Mg2+ are almost completely removed in the F?, Ca2+, and Mg2+ system. According to the pseudo‐first‐order modeling, the rate constants k for F?, Ca2+, and Mg2+ are 0.00348, 0.0106, and 0.0159 min?1 respectively; thus, Mg2+ > Ca2+ > F?. In the ternary system, the removal efficiencies are 53.29–66.03% for F?, 99.99–100% for Ca2+, and 87.21–95.19% for Mg2+ with initial pH 5–10. The removal efficiencies of F? increases with increases in initial concentrations of F?, Ca2+, and Mg2+. The removal of F? is governed by two routes: 1) adsorption by electrostatic interactions and outer sphere surface complexation; 2) co‐precipitation with Ca3(PO4)2, CaHPO4, Mg3(PO4)2, and Mg(OH)2.  相似文献   

16.
Thermal springs of the Boundary Creek hydrothermal system in the southwestern part of Yellowstone Park outside the caldera boundary vary in chemical and isotopic composition, and temperature. The diversity may be accounted for by a combination of processes including boiling of a deep thermal water, mixing of the deep thermal water with cool meteoric water and/or with condensed steam or steam-heated meteoric water, and chemical reactions with surrounding rocks. Dissolved-silica, Na+, K+ and Ca2+ contents of the thermal springs could result from a thermal fluid with a temperature of 200 ± 20°C. Chloride-enthalpy and silica-enthalpy mixing models suggest mixing of 230°C, 220 mg/l Cl thermal water with cool, low-Cl components. A 350 to 390°C component with Cl ≥ 300 mg/l is possibly present in thermal springs inside the caldera but is not required to fit observed spring chemical and isotopic compositions. Irreversible mass transfer models in which a low-temperature water reacts with volcanic glass as it percolates downward and warms, can account for observed pH and dissolved-silica, K+, Na+, Ca2+ and Mg2+ concentrations, but produces insufficient Cl or F for measured concentrations in the warm springs. The ratio of aNa/aH, and Cl are best accounted for in mixing models. The water-rock interaction model fits compositions of acid-sulfate waters observed at Summit Lake and of low-Cl waters involved in mixing.The cold waters collected from southwestern Yellowstone Park have δD values ranging from −118 to −145 per mil and δ18O values of −15.9 to −19.4 per mil. Two samples from nearby Island Park have δD values of −112 and −114 per mil and δ18O values of −15.1 and −15.3 per mil. All samples of thermal water plot significantly to the right of the meteoric water line. The low Cl and variable δD values of the thermal waters indicate isotopic compositions are derived by extensive dilution with cold meteoric water and by steam separation on ascent to the surface. Many of the hot springs with higher δD values may contain in addition a significant amount of high-D, low-Cl, acid-sulfate or steam-heated meteoric water. Mixing models, Cl content and isotopic compositions of thermal springs suggest that 30% or less of a deep thermal component is present. For example, the highest-temperature springs from Three Rivers, Silver Scarf and Upper Boundary Creek thermal areas contain up to 70% cool meteoric water and 30% hot water components, springs at Summit Lake and Middle Boundary Creek spring 57 are acid-sulfate or steam-heated meteoric water; springs 27 and 48 from Middle Boundary Creek and 49 from Mountain Ash contain in excess of 50% acid-sulfate water; and Three Rivers spring 46 and Phillips could result from mixing hot water with 55% cool meteoric water followed by mixing of acid-sulfate water. Extensive dilution by cool meteoric water increases the uncertainties in quantity and nature of the deep meteoric, thermal component.  相似文献   

17.
The hydrochemical analyses of twenty-three springs were used to determine the properties and types of groundwater of the Tertiary-Quaternary Aquifer of northern Jordan. The result shows that the geological formation influences the quality of the investigated groundwater more than the anthropogenic factors. The water of the Quaternary-Tertiary aquifer is enriched in Ca++ due to the dissolution of the nearby carbonate rocks. The investigated water has a low EC values with Ca(Na)-HCO3 water type. Most springs belong to this hydrochemical facies except Malka. Groundwater in the Malka wells has high salinity with NaCl waters and a strong Ca(Mg)-HCO3 facies (900 to 1000 mg/l TDS). The area long-term hydrochemical data have been also evaluated; general trend of increase of the analyzed ion was observed. Bicarbonate represents the most abundant anion in the studied water, which exceeds the permissible limits. Nitrates (NO 3 ? ) also exceed the permissible limit and are the most common contaminant in the investigated water. Data on dissolved major and trace elements (K+, Na+, Mg2+, Ca2+, Cl?, SO 4 2? , Fe, Zn, Cu and Pb) in the investigated water revealed that the concentrations lie within the natural background range. The positive correlation values between various ions indicate that most of ions come from same lithological sources. According to the residual sodium carbonate, and EC values, the studied springs are suitable for agricultural purposes.  相似文献   

18.
Inorganic ions and nutrients were measured at different depths of the Xiangxi and Daninghe Rivers to explore the mixing processes of representative bays in the Three Gorges Reservoir (TGR). HCO3 and Ca2+ are the dominant ions. Carbonate weathering is the most important mechanism controlling the ion water chemistry; however, important differences exist between the main channel and its tributaries. Major ion levels in the TGR bays depend on hydrological mixing. Results show that the major ions of Ca2+, Mg2+, Na+, K+, Sr2+, SO42− and Cl show chemically conservative behaviour during transit through the bays of the TGR. This means the ions can be used as tracers in the same way that salinity is used in estuaries to explore behaviour of other non‐conservative elements and to indicate specific source waters. In contrast, nutrients are not conserved in the mixing zone. The mixing of the main channel and tributaries and biological utilization in backwater reaches were the key factor controlling nutrient distributions in Xiangxi and Daninghe Bays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Chemical studies have been carried out on a number of water wells from the Dibdiba Formation northeast of Kuwait. Water salinity of this formation ranges between 3,300 mg/l to 7,000 mg/l, increasing with depth. The water entrapped in Dibdiba Formation is mainly sodium chloride type which can be differentiated into three different groups according to the ranges of concentration of the main cations and anions. These groups are: (3331113) sodium chloride water type in which Cl > Na, group (3333113) sodium chloride water type in which Na > Cl. In both groups the sequence of dominant cations is Na > Ca > Mg. Group (3333111) sodium chloride water type has Na > Cl and the sequence of dominant cations is Na > Mg > Ca. Chemical ratios of Ca/Mg, Na/Cl, and C1/HCO3 were worked out for Dibdiba ground water. The ratio of Ca/Mg Dibdiba Formation ranges from 0.4 to 8.58, the ratio of Na/Cl ranges between 0.98 to 1.33, and the ratio of C1/HCO3 is 232. A plot of chemical analysis on a trilinear diagram shows that Dibdiba Formation ground-water chemical properties are dominated by alkalies (Na > Ca) and strong acid (Cl > SO4). Water chemistry may reflect the history of the flow path, indicating regional flow as shown by increasing Na+, Cl-, SO4 and where Ca+, Mg+ achieve equilibrium.  相似文献   

20.
This paper aims to identify the spatial distribution of exchangeable base cations in soils on an acid hillslope and to investigate possible cation release processes from slope soils to the stream. The basic assumption underlying this research is that the amount of exchangeable cations in soils reflects the nutrient stores and cation leaching processes across the slope where vegetation and parent materials are similar. The distribution of exchangeable Ca2+, Mg2+, K+ and Na+ has been investigated on a three-dimensional hillslope on the Quantock Hills, Somerset, UK. A two-way ANOVA shows that soil depth is predominant in explaining the total variance of exchangeable bases, despite the steep slope gradient and clear podzolic catena development. Major nutrient base cations, such as Ca2+, Mg2+ and K+, display homogeneous topsoil storage right across the slope. This spatial pattern may indicate that the spatial distribution of major nutrient cations is tightly controlled by the soil–vegetation system in nutrient-poor heathland environments. Na+ is an exception to this vegetation-controlled spatial distribution, because of its small involvement in the soil–vegetation and soil exchangeable systems. In subsurface soils, cations liberated from the soil–vegetation system are subject to redistribution over the slope according to the hydrological flowpaths operating on the slope, with some eventually released into the stream. The saturated wedge developed at the base of the slope plays a key role in the storage and release processes of base cations from slope soils to the stream. Ca2+, Mg2+ and Na+ carried by throughflow are stored in the saturated wedge and gradually released into the stream at times of high flow. K+, however, shows an apparently different spatial behaviour, being deficient in the saturated wedge. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号