首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
湿地土壤N2O排放研究进展   总被引:3,自引:0,他引:3  
湿地作为一种重要而独特的生态系统,在全球变化过程中起着重要作用,是温室气体重要的源、汇和转换器。近年来,湿地垦殖、氮沉降等造成湿地退化、萎缩,湿地功能也因此遭到破坏,这必然会引起湿地温室气体排放的变化。N2O作为备受关注的温室气体之一,许多国内外学者对湿地N2O排放进行了深入研究,并取得了大量研究成果。综述了国内外湿地N2O排放的研究现状及其产生机制,总结了湿地N2O排放的影响因素以及N2O排放的模型估计,并对今后湿地N2O排放研究提出了展望。  相似文献   

2.
运用静态箱-气相色谱法对中亚热带地区米槠天然林和阿丁枫天然林土壤N2O排放速率进行了1年(2012年1月—2013年1月)原位观测,分析了土壤温度及含水量对土壤N2O排放速率的影响,并探讨土壤无机N含量变化与土壤N2O排放速率的关系。结果表明,观测期间,2种天然林均表现为大气N2O排放源,米槠天然林和阿丁枫天然林平均土壤N2O排放速率分别为7.29μg·m-2·h-1、7.41μg·m-2·h-1;米槠天然林和阿丁枫天然林土壤N2O排放速率季节变化明显,最高排放速率均出现在夏季6月,分别为16.51μg·m-2·h-1、18.86μg·m-2·h-1;2个林分N2O排放速率最低值分别出现在2012年1月和2012年9月,分别为3.04μg·m-2·h-1和2.17μg·m-2·h-1。2种天然林土壤N2O排放速率均与土壤温度无显著相关性,与土壤含水量显著正相关(P0.05);2种天然林土壤N2O排放速率与NH4+含量均无显著相关性,米槠天然林和阿丁枫天然土壤N2O排放速率与NO3-含量分别呈显著负相关和显著正相关(P0.05)。研究结果表明,土壤含水量及NO3-含量的变化对中亚热带天然林土壤N2O排放速率有着重要的影响。  相似文献   

3.
运用静态箱-气相色谱法对中亚热带地区米槠天然林和阿丁枫天然林土壤N2O排放速率进行了1年(2012年1月—2013年1月)原位观测,分析了土壤温度及含水量对土壤N2O排放速率的影响,并探讨土壤无机N含量变化与土壤N2O排放速率的关系。结果表明,观测期间,2种天然林均表现为大气N2O排放源,米槠天然林和阿丁枫天然林平均土壤N2O排放速率分别为7.29μg·m^-2·h^-1、7.41μg·m^-2·h^-1;米槠天然林和阿丁枫天然林土壤N2O排放速率季节变化明显,最高排放速率均出现在夏季6月,分别为16.51μg·m^-2·h^-1、18.86μg·m^-2·h^-1;2个林分N2O排放速率最低值分别出现在2012年1月和2012年9月,分别为3.04μg·m^-2·h^-1和2.17μg·m^-2·h^-1。2种天然林土壤N2O排放速率均与土壤温度无显著相关性,与土壤含水量显著正相关(P〈0.05);2种天然林土壤N2O排放速率与NH4+含量均无显著相关性,米槠天然林和阿丁枫天然土壤N2O排放速率与NO3-含量分别呈显著负相关和显著正相关(P〈0.05)。研究结果表明,土壤含水量及NO3-含量的变化对中亚热带天然林土壤N2O排放速率有着重要的影响。  相似文献   

4.
金露梅灌丛草甸氧化亚氮排放特征及冻融交替的影响研究   总被引:4,自引:0,他引:4  
在中国科学院海北高寒草甸生态系统定位研究站地区,利用密闭箱-气相色谱法对金露梅灌丛草甸群落中的丛间草地(GC)、金露梅灌丛(GG)和裸地(GL)3种斑块的氧化亚氮(N_2O)排放季节特征和冻融过程、降水事件的影响进行了初步研究.结果显示:GG年平均排放速率显著高于C.C和GL(P<0.05),C.C与GL差异不显著(P>0.05).3种斑块N_2O排放速率表现出明显的季节波动,生长季高于休眠季,其中GC和GG排放速率在8月出现明显峰值,2月最低;而GL的排放速率2004年最大值出现在3月,2005年在3月和8月出现了两个峰值,最低值均出现在1月.冻融交替过程中各斑块N_2O平均排放速率白天高于夜间,并且除了2005年GL斑块外,均为封冻期土壤排放速率较低,而冻融期提高.2004-07 GC和GG斑块在降雨时排放速率降低,降雨后迅速上升;而2005年时3种斑块在降雨时以及积雪融化时排放速率均大幅升高.各斑块排放速率与土壤5 cm地温呈极显著(GC和GG;P<0.01)或显著正相关关系(GL,P<0. 05).金露梅灌丛草甸2004年和2005年平均排放速率分别为0.043和0.046 mg/(m~2·h),是大气N_2O的一个源,粗略估算整个青藏高原高寒灌丛草甸N_2O排放的辐射强迫约为0.125 Tg CO_2,其在整个青藏高原温室气体收支中的作用不应忽略.  相似文献   

5.
理解土壤可利用性氮(N)如何与土壤酸化和可利用性磷(P)共同作用影响土壤-大气界面CO_2、CH_4和N_2O气体交换,对于揭示生态系统对氮沉降增加的响应机制尤为重要。本研究在中国亚热带地区混交林中设置了N、P和酸添加实验以理清在N添加下酸和P添加如何影响CO_2、CH_4和N_2O气体交换。结果表明,(1)N添加显著增加了土壤铵态氮和硝态氮,对CO_2释放无影响;(2)N、P、N+P和N+P+酸分别降低了21.1%、15.7%、39.1%、26.6%和28.4%的CH_4;相比于N、P单独添加,NP共同添加降低了CH_4吸收,表明N添加和P添加在抑制CH_4吸收上具有加和效应;(3)N、N+P、N+酸和N+P+酸分别增加了158.6%、176.0%、117.2%和91.8%的N_2O释放;N_2O释放在N+P+酸处理中显著低于N+P处理,与N添加和N+酸添加无显著差异,表明在N添加下,仅P丰富的条件下,酸添加才能够缓解N_2O释放。我们的结果证实,在N和P共同限制的酸性土壤森林生态系统,低P将会抑制N沉降引起的土壤CH_4吸收。低P时,N沉降引起的土壤酸化与其引发的N_2O释放无关。  相似文献   

6.
内蒙古温带半干旱羊草草原N2O通量及其影响因素   总被引:5,自引:2,他引:5  
利用静态箱 -气相色谱法于 2 0 0 1~ 2 0 0 3年对内蒙古锡林河流域羊草草原进行了连续 2年的野外定位试验 ,获得羊草草原原状群落与土壤N2 O年排放通量分别在 3 91~ 4 71μgm- 2h- 1以及 5 5 0~ 10 0 3μgm- 2 h- 1范围内变动 ,证明内蒙古温带半干旱羊草草原生态系统是大气中N2 O的源 ;系统分析了羊草草原N2 O通量的季节变化、源汇特征以及关键的环境因子对草地N2 O通量的影响等 ,建立了N2 O通量与环境因子间的回归方程 ;并利用两年连续完整的观测数据对羊草草原N2 O年排放量进行了估算  相似文献   

7.
东日本自然湿地的土壤反硝化   总被引:1,自引:0,他引:1  
地表水和地下水中硝酸盐污染已成为重要的环境问题之一。随着对全球变暖的贡献增加,N2O(氧化亚氮)也得到IPCC越来越多的关注。反硝化在水生生态系统氮循环过程中起着极为重要的作用。反硝化过程中,厌氧细菌将硝酸盐转化成可溶性亚硝酸盐,最终以N2形式排放到大气。为理解自然湿地生态系统的脱氮机理,以日本千叶县的越智小流域为例开展研究。沿地下水流动方向取原状土,包括2个非饱和带点和2个饱和带点。用乙炔抑制法和带ECD检测器的气相色谱仪于0, 2, 6, 12, 24h测定土壤反硝化能力。同时分析土壤全碳、全氮和反硝化细菌。结果发现,饱和带的反硝化能力高于非饱和带。乙炔抑制后,N2O排放从0-1.17 g Nm-2h-1,前6h增至最大,随后降低。  相似文献   

8.
为了研究碱湖N2O释放速率及其对盐度与pH的响应,选取内蒙古大克泊碱湖的五个沉积物样点,采用15N同位素标记模拟实验,研究反硝化和厌氧氨氧化的速率、相对比例和气体产生情况,揭示高盐和高pH对碱湖氮移除的影响。发现大克泊湖潜在氮移除速率为0~16.06 n mol N mL-1 h-1,潜在反硝化速率为0~12.62 n mol N mL-1 h-1,潜在厌氧氨氧化速率为0~9.81 n mol N mL-1 h-1;当盐度34.00 g·L-1与pH 10.22时,厌氧氨氧化对氮移除贡献较大,达到43.18%~71.79%。反硝化过程气体产物以N2为主,几乎无N2O气体释出。另外,该区域潜在氮移除速率与pH呈正相关关系,与TOC、NO-3、HCO-3呈负相关关系;未发现氮移除速率与盐度之间的相关关系。因此,在研究的碱湖中,氮移除过程中主要为N2排放,而N2O低于检测水平;氮移除过程的影响因素复杂且不限于最主要的环境变量(盐度与pH)。这些结果为研究湖泊N2O排放提供了数据基础。  相似文献   

9.
大气氮沉降可能会影响陆地生态系统的碳通量。本文主要目的是探讨在氮素缺乏的草地生态系统中,氮素添加是否会增加CO2通量。本研究于2008和2009生长季进行,采用静态箱-气相色谱法研究CO2通量对氮沉降增加的响应。结果表明,2年的氮素添加并没有显著影响土壤NH4+含量,NO3-含量只是在2009年生长季后期有所增加。高氮处理增加了CO2通量,而低氮处理在2008年抑制了CO2通量,2009年后期增加了CO2通量。而且氮素添加显著增加了地上生物量和根系的生物量。CO2通量与土壤水分、土壤温度的关系并没有因为氮素的添加而改变,但是氮素添加增加了CO2通量对土壤水分和土壤温度的敏感性。这些结果表明,在未来大气氮沉降增加的背景下,呼伦贝尔草甸草原CO2通量有可能会增加。  相似文献   

10.
中国北方典型风沙区土壤碳氮磷化学计量特征   总被引:5,自引:2,他引:3  
研究区域尺度土壤碳(C)、氮(N)、磷(P)化学计量特征与分布格局对于认识陆地生态系统空间格局变化规律及其对全球变化与人类活动的响应具有重要意义。通过文献收集和野外调查,对中国北方典型风沙区表层土壤有机C、全N、全P化学计量特征及其沿经度和纬度的分布格局进行了研究。结果表明:(1)北方典型风沙区表层土壤有机C、全N、全P含量及C:N、C:P和N:P的平均值分别为12.2、1.2、0.8 g·kg-1及10.1、15.7、1.63,与全国水平相比,具有较低的有机C含量、全N含量、C:P、N:P及较高的全P含量;(2)农田表层土壤有机C、全N、全P含量及C:P显著高于草地表层土壤,C:N和N:P在农田和草地之间无显著差异;(3)北方典型风沙区表层土壤有机C、全N、全P元素间具有一定的耦合关系,但这种耦合关系在草地和农田间存在差异性;(4)北方风沙区草地和农田土壤有机C、全N、全P化学计量特征随纬度的增加呈逐渐增加趋势,除草地全P含量和N:P外,其余指标均与纬度呈线性关系;草地和农田土壤有机C、全N、全P化学计量特征随经度的增加呈先减小后增加的趋势,与经度呈二阶多项式分布关系。  相似文献   

11.
土壤N2O排放研究进展   总被引:10,自引:0,他引:10  
N2O不仅是一种重要的温室气体,而且还可以破坏臭氧层。随着人类活动的增加,其在大气中的浓度不断上升,对环境的影响也更加严重,因此,N2O的排放日益成为环境研究的热点问题。土壤是N2O的重要排放源。本文综合分析了土壤N2O排放研究的进展情况,主要包括:土壤N2O产生及排放的机理;影响N2O排放的主要因素;土壤N2O排放的时空特征以及全球N2O排放的模型估计;最后提出了今后的研究方向。  相似文献   

12.
中国农业氧化亚氮排放情景研究   总被引:2,自引:0,他引:2  
采用国际应用系统分析研究所的"牲畜和粮食产量动态模型",模拟出2000-2030年间中国粮食和牲畜的数量和需求量的地理分布,然后应用GAINS模型预测我国未来农业N2O排放量。结果显示,2000年我国农业N2O排放量为1533ktN2O,到2030年将增加到2000ktN2O左右,增长31%;农田N2O排放占农业N2O总排放量的80%,2030年农田N2O的排放量比2000年增长37%。由于活动水平数据的模拟结果不同,各情景的N2O排放量不同,其中INMIC_低情景中N2O的排放量稍高于中、高排放情景。我国农业N2O排放主要集中在山东、河南、四川、河北,江苏、湖南、云南、安徽等省,到2030年,黑龙江、内蒙古、新疆、云南和湖南五省的N2O增加量在30ktN2O以上。硝化抑制剂作为N2O的减排措施,从2015年开始实施,减排效率由4%上升到16%。采用IPCC默认排放因子会高估我国农田N2O排放。  相似文献   

13.
介绍了湿地生态系统及其氮沉降和水位下降的概况,综述了全球变化背景下的氮沉降和水位下降对湿地生态系统的具体影响。氮沉降能够在一定范围内提高生产力,具体表现在植物的地上生物量、净初级生产力、植株高度等方面,氮沉降还影响植被组成,使苔藓类植物向维管植物过渡;氮沉降通过两种方式促进微生物分解,一是解除微生物代谢的限制因素,二是改变微生物分解底物的质量;此外,氮沉降还影响温室气体(甲烷、二氧化碳、氧化亚氮)的通量。水位下降后,植被的光合速率降低,生长降低,促进微生物的分解,使温室气体二氧化碳、氧化亚氮的通量增加,使甲烷通量降低。  相似文献   

14.
董云社  齐玉春 《地理研究》2006,25(1):183-183
我国草地生态系统碳素总贮量为308 PgC,占陆地生态系统碳素总储量的15·2%,草地生态系统在碳循环研究中占有重要的位置。草地生态系统碳循环具有其独特的生物地球化学循环过程和作用,主要表现为:碳素储量绝大部分集中于土壤中,地上生物量中仅为10%;草地生态系统不像森林生态系统那样具有明显的地上生物量,但由于地上部分受放牧、农垦等的影响碳循环远较森林生态系统要强烈,地上部分碳循环不仅速度快,而且向大气排放CO2的作用明显;作为主要碳贮存库的地下部分,由于草地所处的特殊地理位置和气候条件,导致其地下部分分解普遍较慢,草地作为CO2汇的作用更为明显。因此,对于草地生态系统独特的碳循环过程与机制的研究  相似文献   

15.
全球变化对草地土壤微生物群落多样性的影响研究进展   总被引:5,自引:0,他引:5  
全球变化对人类生存环境的影响已成为当前全世界共同关注的焦点。草地分布十分广泛, 且大多位于生态脆弱带, 对全球变化响应十分敏感。当前, 有关全球变化对草地生态系统影响的研究主要集中于地上植被部分, 对于生态系统物质循环关键参与者和草地碳源汇的重要调节者--土壤微生物的研究相对较少。本文综述了全球变化因子, 包括CO2浓度、气温、降水及氮沉降等因素及其交互作用对草地土壤微生物群落多样性影响的相关研究进展, 并在此基础上对当前研究中的一些不足之处进行剖析, 对未来研究需关注的问题和研究方向进行了讨论和展望。  相似文献   

16.
西双版纳地区稻田甲烷的排放通量   总被引:4,自引:0,他引:4  
2005年,采用静态箱(暗箱)-气相色谱法对云南西双版纳热带地区单季稻田甲烷(CH4)排放进行田间原位观测。试验设置了三个处理,即无氮肥对照处理(NN)、低氮施肥处理(LN)和高氮施肥处理(HN),氮肥(尿素和复合肥)水平分别为0 kg/(N.hm2)、150 kg/(N.hm2)和300 kg/(N.hm2)。结果表明在水稻生长期CH4排放通量的季节变化峰值出现在拔节孕穗期,且只有1个典型的排放峰。NN、LN和HN处理的CH4季节平均排放速率分别为6.69±0.37 mg/(m2.h)、7.19±0.43 mg/(m2.h)和6.04±0.31 mg/(m2.h)。不同氮肥用量对CH4排放通量的影响规律不明显。各处理的CH4排放通量与温度的相关关系不同,与稻田水深均无显著的相关关系。  相似文献   

17.
温度和水分对科尔沁沙质草地土壤氮矿化的影响   总被引:1,自引:0,他引:1  
陈静  李玉霖  冯静  苏娜  赵学勇 《中国沙漠》2016,36(1):103-110
土壤氮矿化对陆地生态系统初级生产力起决定性作用,但其影响因素较多,其中温度和水分最为重要。研究沙质草地土壤氮矿化对温度和水分的响应,对预测全球变化对沙质草地生态系统结构和功能的影响具有重要作用。因此,通过开顶式气室(OTC)模拟增温和人工调控田间持水量的方法对科尔沁沙质草地的土壤进行原位培养,分析温度和水分对土壤氮矿化作用的影响。结果表明:无论温度如何变化,科尔沁沙质草地土壤氮净矿化/硝化速率随着田间持水量的增加而明显提高。净硝化速率和净矿化速率在田间持水量为9.5%时最大,田间持水量达到时12.5%明显下降。增温使沙质草地土壤氮矿化显著变化,但增温的效应与田间持水量存在一定的关联。在相对适宜的田间持水量条件下(田间持水量为6.5%~12.5%),OTC增温可以使科尔沁沙质草地的土壤氮矿化/硝化速率显著提高;但是在田间持水量处于相对较低或者过高的状态下,该地区土壤的净氮净矿化/硝化速率对温度增加的响应不明显。  相似文献   

18.
土壤氮矿化对陆地生态系统初级生产力起决定性作用,但其影响因素较多,其中温度和水分最为重要。研究沙质草地土壤氮矿化对温度和水分的响应,对预测全球变化对沙质草地生态系统结构和功能的影响具有重要作用。因此,通过开顶式气室(OTC)模拟增温和人工调控田间持水量的方法对科尔沁沙质草地的土壤进行原位培养,分析温度和水分对土壤氮矿化作用的影响。结果表明:无论温度如何变化,科尔沁沙质草地土壤氮净矿化/硝化速率随着田间持水量的增加而明显提高。净硝化速率和净矿化速率在田间持水量为9.5%时最大,田间持水量达到时12.5%明显下降。增温使沙质草地土壤氮矿化显著变化,但增温的效应与田间持水量存在一定的关联。在相对适宜的田间持水量条件下(田间持水量为6.5%~12.5%),OTC增温可以使科尔沁沙质草地的土壤氮矿化/硝化速率显著提高;但是在田间持水量处于相对较低或者过高的状态下,该地区土壤的净氮净矿化/硝化速率对温度增加的响应不明显。  相似文献   

19.
人类活动导致的大气氮沉降也许已经改变了凋落物分解速率和物种组成,从而影响生态系统氮循环和碳储量。本文在呼伦贝尔草甸草原,采用凋落物袋的方法,结合低剂量氮添加处理实验(对照:无氮添加;低氮处理:1gNm^-2y^-1;高氮处理:2gNm^-2Y^-1),研究了在28个月的分解实验期间,氮沉降对三种优势种地上部凋落物分解剩余重量变化的影响。结果表明:在我们的研究中,无论高氮还是低氮添加均对单物种凋落物分解没有影响,但是低氮添加轻微地抑制了混合凋落物分解。凋落物分解明显地受到物种类型的影响。我们的结果说明,初始凋落物质量可能是凋落物分解的主要决定因素,自然生态系统中低剂量的氮沉降并不会影响单物种凋落物的分解。  相似文献   

20.
土地利用/覆被变化对土壤温室气体排放通量影响   总被引:2,自引:0,他引:2  
土地利用/覆被变化影响温室气体的净排放,改变了全球温室气体的收支平衡.森林、草地和农田之间的转化、湿地和旱地的转化及土地管理措施的不同,影响着土壤碳的释放和其他痕量气体的排放,从而改变全球变暖增温的综合潜力(GWP),因此要综合考虑土地利用/覆被变化对土壤CO2、CH4和N2O排放通量的影响.加强对温室气体发生机理的研究,选取合理的土地利用和士地管理方式,减少全球大气温室气体浓度增加,是未来研究的重点和难点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号