首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于中主应力修正关系的边坡稳定性分析   总被引:1,自引:0,他引:1  
龚文俊  曾立峰  孙军杰  李明永 《岩土力学》2014,35(11):3111-3116
边坡稳定性分析时通常将应力条件简化为平面应变状态,采用三轴试验强度计算出的边坡稳定性偏于保守。在充分考虑中主应力物理含义及力学机制的基础上,将Mises屈服准则与Mohr-Coulomb(简称M-C)内切圆屈服准则进行匹配,得到了平面应变条件下土体屈服破坏时中主应力的理论修正关系,进而也得到了该条件下最大主应力与最小主应力的比值关系,从理论上证明了该比值关系是与土体平面应变破坏时内摩擦角成一定关系的常数,也在平面应变试验中得到了验证,从侧面反映出中主应力理论修正关系的合理性。由上述两种关系建立了土体平面应变破坏条件下的应力路径,结合Lade-Duncan强度准则,建立了平面应变条件下强度参数与三轴试验试验条件下强度参数转换公式,由该转换公式得到的平面应变条件下的强度参数与平面应变试验实测值误差在2%左右,大幅缩小了三轴试验实测值与平面应变试验实测值的误差。在均质边坡稳定分析中分别采用常规三轴试验强度值与由公式转换得到的平面应变强度值进行计算。研究结果表明,三轴试验条件下内摩擦角为10°~20°之间时,基于两种强度参数得出的安全系数相差不大;当三轴试验条件下内摩擦角大于20°时,平面应变条件下安全系数较三轴试验条件下提高19%左右,但该成果只在文中计算案例有效,两者误差的准确关系还有待于进一步研究。值得关注的是,由于平面应变条件下土体强度变大,边坡的临界滑面深度变浅了,其形态相应变陡。  相似文献   

2.
An analysis of the vane test using an Arbitrary Lagrangian–Eulerian formulation within a finite element framework is presented. This is suitable for soft clays for which the test is commonly used to measure in situ undrained shear strength. Constitutive laws are expressed in terms of shear stress–shear strain rates, and that permits the study of time effects in a natural manner. An analysis of the shear stress distributions on the failure surface according to the material model is presented. The effect of the constitutive law on the shear band amplitude and on the position of the failure surface is shown. In general, the failure surface is found at 1–1·01 times the vane radius, which is consistent with some experimental results. The problem depends on two dimensionless parameters that represent inertial and viscous forces. For usual vane tests, viscous forces are predominant, and the measured shear strength depends mainly on the angular velocity applied. That can explain some of the comparisons reported when using different vane sizes. Finally, the range of the shear strain rate applied to the soil is shown to be fundamental when comparing experimental results from vane, triaxial and viscosimeter tests. Appart from that, an experimental relation between undrained shear strength and vane angular velocity has been reproduced by this simulation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The objective of this study is to derive an effective stress‐based constitutive law capable of predicting rate‐dependent stress–strain, stress path and undrained shear strength and creep behavior. The flow rule used in the MIT‐E3 model and viscoplasticity theory is employed in the derivation. The model adopts the yield surface capable of representing the yield behavior of the Taipei silty clay and assumes that it is initially symmetric about the K0‐line. A method is then developed to compute the gyration and expansion of the loading surface to simulate the anisotropic behavior due to the principal stress rotation after shear. There are 11 parameters required for the model to describe the soil behavior and six of them are exactly the same as those used in the Modified Cam‐clay model. The five additional parameters can be obtained by parametric studies or conventional soil tests, such as consolidation tests, triaxial compression and extension tests. Finally, verification of the model for the anisotropic behavior, creep behavior and the rate‐dependent undrained stress–strain and shear strength of the Taipei silty clay is conducted. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
考虑强度各向异性的边坡稳定有限元分析   总被引:1,自引:0,他引:1  
王栋  金霞 《岩土力学》2008,29(3):667-672
天然沉积的土层总是表现出一定程度的强度各向异性,但现有的边坡稳定有限元分析极少考虑各向异性的影响。对大型有限元软件ABAQUS进行二次开发,使其能够考虑土体黏聚力随大主应力方向的变化,动态更新增量迭代求解过程中边坡不同位置处的抗剪强度,进而提出具备安全系数自动搜索功能的各向异性边坡稳定分析方法。计算结果表明,均匀边坡的有限元解与极限分析上限解相差很小。如果采用土体固结方向的黏聚力并按各向同性评价缓坡的稳定性,可能严重高估安全系数,尤其是在黏聚力较高的情况下。与极限分析不同,建立的强度更新有限元模型能够分析成层边坡的稳定性。  相似文献   

5.
6.
Owing to imperfect boundary conditions in laboratory soil tests and the possibility of water diffusion inside the soil specimen in undrained tests, the assumption of uniform stress/strain over the sample is not valid. This study presents a qualitative assessment of the effects of non‐uniformities in stresses and strains, as well as effects of water diffusion within the soil sample on the global results of undrained cyclic simple shear tests. The possible implications of those phenomena on the results of liquefaction strength assessment are also discussed. A state‐of‐the‐art finite element code for transient analysis of multi‐phase systems is used to compare results of the so‐called ‘element tests’ (numerical constitutive experiments assuming uniform stress/strain/pore pressure distribution throughout the sample) with results of actual simulations of undrained cyclic simple shear tests using a finite element mesh and realistic boundary conditions. The finite element simulations are performed under various conditions, covering the entire range of practical situations: (1) perfectly drained soil specimen with constant volume, (2) perfectly undrained specimen, and (3) undrained test with possibility of water diffusion within the sample. The results presented here are restricted to strain‐driven tests performed for a loose uniform fine sand with relative density Dr=40%. Effects of system compliance in undrained laboratory simple shear tests are not investigated here. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Significant difference in stress–strain behavior of dense cohesionless soil has been observed between plane strain and triaxial test conditions. At present, majority of geotechnical laboratories have no plane strain testing facility. Therefore, geotechnical professionals are more dependent on the conventional triaxial test for soil properties, whereas many geotechnical structures prevail close to plane strain condition. A method has been proposed to determine soil properties for plane strain condition from the conventional triaxial tests. This method can especially be used to determine the internal friction angle and stress–strain relationship for plane strain condition from triaxial tests results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Behaviour of Cellular Reinforced Sand Under Triaxial Loading Conditions   总被引:1,自引:0,他引:1  
Cellular reinforcement is a three dimensional reinforcement used for reinforced soil structures. Behaviour of such reinforcement is important for its use in actual practice. Present paper focuses on the behavior of cellular reinforcement in sand under the triaxial loading conditions. Series of triaxial tests are performed on unreinforced and reinforced sand with single layer as well as double layers of cellular reinforcements with 75 mm sample diameter. Six different reinforcement heights of cellular reinforcements (varying from 3 to 50 mm) are used along with one sheet reinforcement of thickness 1 mm. From the experimental failure patterns of the triaxial samples, multiple zones of failure are observed as an effect of cellular reinforcement. Deviator stress–strain curves are studied for single and double layers of cellular reinforcement under three different confining pressures. Peak deviator stress is found increasing with increasing height of cellular reinforcement, which shows the confining effect of cellular reinforcement. Shear strength parameters are evaluated and are found increasing with increase in height of cellular reinforcement, also cellular reinforcement with heights 10 mm and more have showed increased shear strength parameters, as compared to 1 mm thick sheet reinforcement. This assures better behavior performance of cellular reinforcement over the planar one. Failure patterns are also visualized by finite element analysis and found in accord with experimental observations Horizontal displacement for reinforced samples visualized multi-zoned failure pattern. Finite element results for deviator stress–strain relationship are found in reasonably good accord with experimental results.  相似文献   

9.
This paper describes a modified elasto‐plasticity damage model to capture monotonic and cyclic behavior of the interface between a geotextile and gravelly soil. New damage variable and shear strength criterion are introduced on the basis of test observations. The formulations of the modified model are obtained by extending those of the original interface model. The model parameters with physical meaning are easily determined from a group of cyclic shear tests and a confining compression test. The model predictions are compared with the results of a series of direct shear tests and large‐scale pullout tests. The comparison results demonstrate that the model accurately describes the monotonic and cyclic stress–strain relationship of the interface between a geotextile and gravelly soil while capturing new characteristics: (1) the strength that is nonlinearly dependent on the normal stress; (2) significant shear strain‐softening; (3) the comprehensive volumetric strain response with dependency on the shear direction; and (4) the evolution of behavior associated with the changes in the physical state that includes the geotextile damage. This model is used in a finite element analysis of pullout tests, indicating that the tensile modulus of a geotextile has a significant effect on the response of the geotextile–gravel system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Talbingo Dam is a well instrumented, 162m high rockfill structure with an upstream sloping silty clay core, located in the southern New South Wales, Australia. A non-linear finite element analysis of its behaviour was carried out under plane strain conditions, simulating its construction, reservoir filling and steady seepage loading stages. Material parameters are determined from triaxial tests on the rockfill, core, filter and transition materials, compacted to field dry density and moisture content. All materials show non-linear stress–strain behaviour, with rockfill exhibiting work softening at large strain. Mohr envelopes for rockfill are slightly curved but linear approximations are acceptable. When compared with stresses and deformations at maximum cross section, the analytical results show good agreement in most areas. A non-linear model for pore pressure response is used successfully to predict the high pore pressures in the lower region of the core. A stability analysis performed for the end of construction stage, based on finite element stresses, shows that the design safety factors are slightly conservative.  相似文献   

11.
罗爱忠  邵生俊 《岩土力学》2015,36(7):2117-2124
平面应变仪是一种开发较早但至今尚不完善的一种土工试验仪器,随着国家基础设施建设的发展,平面应变试验及试验方法在许多领域得以应用,显示出了平面应变试验在工程设计和研究中的重要性。通过回顾国内外平面应变仪的发展,提出了开发一种新型的土工平面应变三轴仪的思路,以实现更科学、更精确地进行复杂应力加载条件下土平面应变试验的研究。以此为目的,从压力室结构、加载系统及控制量测系统等方面提出了相应的改善措施,开发了一种新型的土工平面三轴仪。并通过重塑黄土的平面应变试验及改进的真三轴仪平面应变试验对比、以及平面应变试验强度参数与常规三轴试验强度参数对比分析,验证了所研制的新型卧式土工平面应变仪的合理性和研制思路的正确性。最后,通过对该平面应变仪应变试验的黄土破坏特性与改进真三轴平面应变试验的黄土破坏特征的对比分析,验证了本文所开发的平面应变仪在描述土体应变局部化问题的合理性。  相似文献   

12.
垃圾土力学性质的室内试验研究   总被引:13,自引:0,他引:13  
刘荣  施建勇  彭功勋 《岩土力学》2005,26(1):108-112
对室内配制的不同成份的垃圾土分别进行了固结不排水和固结排水三轴压缩试验。结果表明,垃圾土的本构关系基本符合邓肯-张双曲线模型。垃圾土中有机质及土粒的含量是影响垃圾土强度参数c,φ值的重要因素。对于有机质含量较高而土粒含量较低的垃圾土,c宜取低值,φ宜取高值。给出了c,φ值的取值范围及其变化规律。随着时间的变化,c值会有所增加,而φ值会有所降低。观察到垃圾土的轴向应变超过30 %而其主应力差仍然在增长。垃圾土在固结过程中,存在滞留孔隙水压力,其渗透系数k值的变化与应力、时间、垃圾土的成分等因素有关。在固结排水三轴压缩试验的剪切过程中,孔隙水压力会随轴向应力的增加而增加,试验所得到的总应力强度参数并不就是有效应力强度参数。  相似文献   

13.
A series of triaxial creep tests were conducted on warm frozen silts extracted from Qinghai–Tibet Plateau at temperature of ?1.5 °C under confining pressures of 0.5, 1.0, and 2.0 MPa, respectively. The applied test stress levels were 30, 50, 60, and 70% of triaxial shear strength, respectively. The test results indicate that the creep strain increases with the increase in applied stress level and there is a stress threshold, based on which the test results can be classified into two types of creep strain curves. The creep strain curve only includes primary and secondary creep stages when the stress level is less than the threshold value. When the stress level exceeds the threshold value, the creep strain velocity gradually increases and the specimen quickly fails in tertiary creep stage. Based on the creep test results, a fractional order rheological element model is established for warm frozen silt, which is also generalized from uniaxial stress state to the three-dimensional stress state. From the analysis on the features of the stress threshold, a creep strength criterion is also proposed simultaneously. Comparing the calculated results of the warm frozen silt with the tested ones, it is found that the predicted results of the proposed model are in good agreement with the test results. In the proposed fractional order model, the relationship between the damage factor and time is established to describe the damage degree of the specimen. Compared with the existing creep constitutive model of frozen soil, the proposed fractional order model has advantages of fewer model parameters, higher simulation precision and wider applicability in analyzing the mechanical properties of warm frozen silt.  相似文献   

14.
Wang  Jun  Wu  Lei  Cai  Yuanqiang  Guo  Lin  Du  Yunguo  Gou  Changfei  Ni  Junfeng  Gao  Ziyang 《Acta Geotechnica》2021,16(4):1161-1174

In certain field conditions such as offshore projects under wave loads or embankments under traffic loads, both the vertical and horizontal stresses are variable. However, previous investigations rarely considered the variation in horizontal stress. To better understand the characteristics of natural saturated soft clay, a series of monotonic and cyclic triaxial tests with a K0-consolidation state were carried out under a variable confining pressure (VCP) stress path. The development of axial strain, pore water pressure and effective stress path is analysed. The results show that with the increase in η (the ratio of the variation in the mean effective principal stress to that of the deviatoric stress), the undrained shear strength (qf) decreases continuously. The pore water pressure generation is slightly improved under a stress path with increasing confining pressure. Based on the test results, a unified formula was established to predict the pore water pressure under VCP stress paths. The unique pqe relationship of normally consolidated clay in monotonic VCP triaxial tests was also demonstrated. Under VCP stress paths, the amplitude of the pore pressure increases, and the effective stress path tilts more sharply to the right. Moreover, a unified formula was established that can provide a good reference for predicting effective stress paths under cyclic VCP triaxial tests.

  相似文献   

15.
梅国雄  卢廷浩  陈浩  李治 《岩土力学》2010,31(7):2079-2082
针对基坑开挖过程中坑侧土体的应力路径,采用真三轴仪进行考虑初始应力状态下侧向卸荷试验,并与常规三轴试验以及轴向加荷真三轴试验结果进行对比分析,结果表明: 曲线类似于常规三轴剪切试验的 曲线,呈双曲线关系;由于中主应力的影响,土体的初始强度得到提高,真三轴加荷试验初始切线斜率总是大于常规三轴试验的初始斜率;在侧向卸荷的条件下,土体可以在相对小的应变下发生破坏,加荷路径下破坏,土体应力强度要大于卸荷路径。  相似文献   

16.
Large sets of soil experimental data (field and laboratory) are becoming increasingly available for calibration of soil constitutive models. A challenging task is to calibrate a potentially large number of model parameters to satisfactorily match many data sets simultaneously. This calibration effort can be facilitated by optimization techniques. The current study aims to explore systematic approaches for exercising optimization and sensitivity analysis in the area of soil constitutive modelling. Analytical, semi‐analytical and numerical optimization techniques are employed to calibrate a multi‐surface‐plasticity sand model. Calibration is based on results from a number of drained triaxial sample tests and a dynamic centrifuge liquefaction test. The analytical and semi‐analytical approaches and associated sensitivity analysis are applied to calibrate the model non‐linear shear stress–strain response. Thereafter, model parameters controlling shear–volume coupling effects (dilatancy) are calibrated using a solid–fluid fully coupled finite element program in conjunction with an advanced numerical optimization code. A related sensitivity study reveals the challenges often encountered in optimizing highly non‐linear functions. Overall, this study demonstrates applicability and limitations of optimization techniques for constitutive model calibration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
张伏光  蒋明镜 《岩土力学》2018,39(1):339-348
对基坑开挖影响范围内土体的应力路径进行平面应变试验离散元数值模拟,以研究结构性与卸荷形式对坑周土体宏微观力学特性的影响。首先,将一个描述土颗粒间胶结效应的简单三维胶结接触模型植入三维离散元软件PFC3D;其次,对初始K0固结状态的重塑土、结构性土试样分别进行常规三轴以及平面应变条件下4种不同卸荷应力路径的离散元模拟;最后,对经历不同卸荷形式的坑底土体单元进行再加荷模拟。模拟结果表明,在卸荷过程中,被动区土体峰值强度以及破坏时竖向应变随卸荷比增大而增大,且其强度小于主动区土体强度;在卸荷、再加荷过程中,被动区土体峰值强度随卸荷比增大而增大,但均小于不卸荷而直接加荷条件下的峰值强度;由于结构性的存在,土体由应变硬化向应变软化过渡,且强度增长;结构性与卸荷形式显著影响土体体积改变。在微观尺度,增大卸荷比或结构性均会增大垂直大主应力方向的平面上的法向接触力,进而提高其强度。  相似文献   

18.
房营光 《岩土力学》2014,35(1):41-47
土体是一种颗粒介质,其强度与变形特性具有显著的颗粒尺度效应。采用胞元土体模型和三轴抗剪试验分析了土体强度和变形的尺度效应特性。根据土体中不同尺度颗粒间相互作用表现出的聚集和摩擦效应,提出了“基体-增强颗粒”土体胞元模型,胞元体由基体和增强颗粒组成,其中基体由微小土颗粒集成,而增强颗粒为砂粒,宏观土体则简化为由许多胞元体构成的介质。引入广义球应变和广义等效应变,基于应变能导出了考虑颗粒尺度效应的应力-应变关系以及屈服应力计算公式;同时,针对增强颗粒不同粒径和体分比的土体进行一系列三轴不排水抗剪试验,给出了应力-应变和屈服应力尺度效应的测试结果。试验和理论计算结果均表明,土体强度和变形的尺度效应随增强颗粒的体分比增加以及粒径的减小而增强,由此反映出土体强度和变形显著的尺度效应;土体强度和变形尺度效应的理论预测结果与试验具有较好的一致性。  相似文献   

19.
高应力状态下的黄土抗剪强度特性研究   总被引:1,自引:0,他引:1  
安辉 《工程地质学报》2015,23(4):597-603
土体抗剪强度包络线在一定的应力范围内可近似看做直线, 一般工程中直剪试验正应力和三轴试验围压常为0~400kPa, 试验可得出以黏聚力c和内摩擦角确定的强度。在黄土地区, 人工和自然边坡可超百米, 坡内应力自低到很高变化范围大, 对该类高边坡需考虑强度参数随应力状态的变化。本文先通过线弹性有限元模拟一黄土高边坡应力场。以潜在滑面上关键点的应力为固结应力进行三轴压缩试验(NCTC)。为了对比分析, 又进行了100kPa、200kPa、300kPa、400kPa围压下的三轴压缩试验(CTC)。结果表明, 考虑黄土高边坡应力状态时, 由总应力莫尔圆得到的强度包络线为曲线, 直线型莫尔-库伦强度准则不适用; 而有效应力莫尔圆的到的强度包络线可为直线, 其有效强度参数高于CTC试验。在-应力空间中, NCTC试验总强度包络线和有效包线均位于CTC试验强度包线之上, 抗剪强度高, 这同固结应力高且为偏压固结有关。  相似文献   

20.
于永堂  郑建国  刘争宏  张继文 《岩土力学》2016,37(12):3635-3641
钻孔剪切试验是一种通过在钻孔侧壁上进行直剪试验来测定土体黏聚力和内摩擦角的原位测试方法。阐述和总结了钻孔剪切试验的基本原理、试验和数据处理方法。为了评估钻孔剪切试验测定黄土抗剪强度指标的适用性,采用Iowa钻孔剪切试验仪实测了不同深度黄土的抗剪强度指标,并与室内三轴剪切试验(CU)和直剪试验结果进行了对比。试验结果显示,钻孔剪切试验用于测定黄土的抗剪强度指标时,抗剪强度与法向压力具有较好的线性相关性;试验黄土的钻孔剪切试验应力-应变关系曲线为应变软化型;钻孔剪切试验结果与室内三轴剪切试验(CU)和直剪试验结果相比,黏聚力降低,内摩擦角增大;均质黄土地层的钻孔剪切试验数据离散性相对较小,可采用“整体”破坏包线法对抗剪强度指标进行统计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号