首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Wind tunnel tests were conducted to examine the fetch effect of a gravel surface on the ?ux pro?le of the sand cloud blowing over it using typical dune sand. The results suggest that the ?ux pro?le of blown sand over a gravel surface differs from that over a sandy surface and is characterized by a peak ?ux at a height above the surface while that over a sandy surface decreases exponentially with height. The ?ux pro?le of a sand cloud over a gravel surface can be expressed by a Gaussian peak function: q = a + b exp (?0·5((h ? c)/d)2), where q is the sand transport rate at height h, and a, b, c and d are regression coef?cients. The signi?cance of the coef?cients in the function could be de?ned in accordance with the fetch length of the gravel surface and wind velocity. Coef?cient c represents the peak ?ux height and increases with both wind velocity and fetch length, implying that the peak ?ux height is related to the bounce height of the particles in the blowing sand cloud. Coef?cient d shows a tendency to increase with both wind velocity and fetch length. The sum of a and b, representing the peak ?ux, increases with wind velocity but decreases with fetch length. The average saltation height derived from the cumulative percentage curve shows a tendency to increase with both the fetch length and wind velocity. For any fetch length of a gravel surface the sand transport equation is expressed as Q = C(1 ? Ut/U)(ρ/g)U3, where Q is the sand transport rate, U is the wind velocity, Ut is the threshold velocity measured at the same height as U, g is the gravitational acceleration, ρ is the air density, C is a proportionality coef?cient that decreases with the fetch length of the gravel surface. At a given wind velocity, the sand transport rate over a gravel surface is only 52–68 per cent of that over a sandy surface. The ?ux rate in true creep over a gravel surface increases with wind velocity but decreases with the fetch length, whereas the creep proportion (the ratio of creep ?ux to the sand transport rate) decreases with both the wind velocity and fetch length. Two‐variable (including fetch length and wind velocity) equations were developed to predict the peak ?ux height, average saltation height and transport rate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
The effect of large roughness elements on sand transport efficiency was evaluated on a coastal sand sheet by measuring sand flux with two types of sand traps [Big Spring Number Eight (BSNE) and the Cox Sand Catcher (CSC)] at 30 positions through a 100 m‐long × 50 m‐wide roughness array comprised of 210 elements each with the dimensions 1·17 m long × 0·4 m high × 0·6 m wide. The 210 elements were used to create a roughness density (λ) of 0·022 (λ = n bh/S, where n is the number of elements, b the element breadth, h the element height, and S is the area of the surface that contains all the elements) in an area of 5000 m2. The mean normalized saltation flux (NSF) values (NSF = outgoing sand flux/incoming sand flux) at the furthest downwind distance for the two trap types were 0·44 and 0·41, respectively. This is in excellent agreement with an empirical model prediction of 0·5. The reduction in saltation flux is similar to an earlier separate study for an equivalent λ composed of elements of similar height (0·36 m), even though the roughness element forms were different (rectangular in this study as opposed to circular) as were the horizontal porosity of the arrays (49% versus 16%). This corroborates earlier results that roughness element height is a critical parameter that enhances reduction in sand transport by wind for similar λ configurations. The available data suggest the form of the relationship between transport reduction efficiency and height is likely a power relationship with two limiting conditions: (1) for elements ≤ 0·1 m high the effect is minimized, and (2) as element height matches and then exceeds the maximum height of the saltation layer (≥ 1 m), the effect will stabilize near a maximum of NSF ≈ 0·32. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents results from a study designed to explore the effects of beach surface moisture and fetch effects on the threshold of movement, intensity of sand transport by wind and mass flux. The experiment was carried out over a period of five weeks at Greenwich Dunes, Prince Edward Island, Canada in May and June 2002. Moisture content was measured with a Delta‐T moisture probe over a 50 m by 25 m grid established on the beach. Measurements of wind speed and direction were made with arrays of cup anemometers and a two‐dimensional sonic anemometer. Transport intensity was measured at a height of 2–4 cm above the bed using omnidirectional saltation probes which count the impact of saltating grains on a piezoelectric crystal. Anemometers and saltation probes were sampled at 1 Hz. Sand transport was measured with vertical integrating sand traps over periods of 10–20 minutes. Results show that where there is a considerable supply of dry sand the saltation system responds very rapidly (1–2 s) to fluctuations in wind speed, i.e. to wind gusts. Where sand supply from the surface is limited by moisture, mean transport rates are much lower and this reflects in both a reduction in the instantaneous transport rate and in a transport system that becomes increasingly intermittent. Threshold wind speed is significantly correlated with an increase in surface moisture content near the upwind end of the beach fetch, but the relationship is not significant at the downwind end where sediment transport is initiated primarily by saltation impact from upwind. Mass flux increases with increasing fetch length and the relationship is described best by a power function. Further work is necessary to develop a theoretical function to predict the increase in transport with fetch distance as well as the critical fetch distance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Conventional aeolian sand transport models relate mass transport rate to wind speed or shear velocity, usually expressed and empirically tested on a 1-s time scale. Projections of total sand delivery over long time scales based on these models are highly sensitive to any small bias arising from statistical fitting on empirical data. We analysed time series of wind speed and sand transport rate collected at 14 independent measurement stations on a beach during a prior field experiment. The results show that relating total sand drift to cumulative above-threshold wind run yields models which are more statistically robust when fitted on empirical data, generating smaller prediction errors when projected to longer time scales. Testing of different power exponents indicates that a linear relationship between sand drift and above-threshold wind run yields the best results. These findings inspire a speculative novel phenomenological model relating the mass flow of air in the boundary layer to the mass transport of sand over the surface. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
A one-day field investigation on an unvegetated backbeach documents the importance of surface sediment drying to aeolian transport. Surface sediments were well sorted fine sand. Moisture content of samples taken in the moist areas on the backbeach varied from 2·9 to 9·2 per cent. Lack of dry sediment inhibited transport prior to 08:50. By 09:10 conspicuous streamers of dry sand moved across the moist surface. Barchan-shaped bedforms, 30 to 40 mm high and composed of dry sand (moisture content <0·10 per cent), formed where sand streamers converged. The surface composed of dry sand increased from 5 per cent of the area of the backbeach at 09:50 to 90 per cent by 12:50 Mean wind speeds were beetween 5·6 and 8·6 m s−1 at 6 m above the backbeach. Corresponding shear velocities were always above the entrainment threshold for dry sand and below the threshold for the moist sand on the backbeach. Measured rates of sand trapped (by vertical cylindrical traps) increased during the day relative to calculated rates. The measured rate of sand trapped on the moist foreshore was higher than the rate trapped on the backbeach during the same interval, indicating that the moist foreshore (moisture content 18 per cent) was an efficient transport surface for sediment delivered from the dry portion of the beach upwind. Measured rates of sand trapped show no clear relationship to shear velocities unless time-dependent surface moisture content is considered. Results document conditions that describe transport across moist surfaces in terms of four stages including: (1) entrainment of moist sediment from a moist surface; (2) in situ drying of surface grains from a moist surface followed by transport across the surface; (3) entrainment and transport of dry sediment from bedforms that have accumulated on the moist surface; and (4) entrainment of sand from a dry upwind source and transport across a moist downwind surface. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
This paper deals with the effect of rainfall on the process of wind erosion of beach sands and presents results from both field and wind tunnel experiments. Although sediment transport by splash is of secondary importance on coastal dunes, splash–saltation processes can move sediments in conditions where no motion is predicted by aeolian processes. The effect of raindrop impact on the movement of soil particles by wind was measured on a sand beach plain using an acoustic sediment sampler. In general, an increase of particle movement by wind at the sensor heights was observed during rainfall. Rainfall also affected the wind erosion process during and after rain by changing the cohesive conditions of the surface. The influence of the surface moisture content on the initiation of wind erosion and on the vertical distribution of transported sand particles was studied in a wind tunnel. Moisture significantly increased threshold wind velocities for the initiation of sediment transport and modified vertical sediment profiles.  相似文献   

8.
One‐dimensional simulations of the unsteady saltation process show that the transport rate's response depends on the amplitude and frequency of the wind fluctuations. At frequencies higher than f ≈ 0·5 Hz the transport rate was found not to respond to the wind changes. The initial overshoot reported by previous investigators was found not to appear for simulation heights smaller than 50 to 60 cm. This is due to the fast propagation of the grains' influence upward in the flow and the immediate deceleration of the wind. Confirmation of these findings comes from reports of experiments conducted in wind tunnels of different sizes. Further test calculations show that the discretization time step size Δt has an influence on the model's temporal behaviour. The reason for this is the better coupling of the wind–sand system when a smaller Δt is used. The implications of bed area choice on the statistical accuracy of predicted transport rate is also demonstrated. In the one‐dimensional case the grain cloud's total forward momentum equals transport rate, which is independent of model geometry. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Aeolian sand transport was studied at the Lanphere Dunes, a coastal dune complex in northern California, by comparing slipface advance rates with transport predicted based on local wind data. The slipfaces of a 2·5 m high transverse ridge and 10 m high parabolic dune were monitored over a period of three months to estimate sand discharge. The study was performed during the dry season, which has the maximum sand‐driving potential. Over the three month study period, average sand discharge was 12·5 m3 per m width per year at the transverse ridge and 8·8 m3 per m width per year at the parabolic dune. A method was developed for modelling slipfaces that are sinuous and where sediment transport rates are not constant across the width of the slipface. Field measurements were used to generate three‐dimensional representations of dune slipfaces. Periodic measurements over the course of three months were used to compute the volume of displaced sediment. Theoretical sand transport was computed from local wind data using the Bagnold model and compared with the observed transport rates. Predicted rates were substantially lower than observed rates. Wind velocities rarely exceeded the threshold velocity. Discrepancies between the observed and predicted values appear to be caused by a combination of wind data recording procedures and differences between wind velocities at the anemometer location and the site where sand transport was measured. Wind data collected by weather bureaux have been utilized in numerous studies for modelling sediment transport. Such data typically have sample intervals of one hour or greater and are often averaged prior to reporting. The effect of averaging was investigated by comparing sand transport estimates based on daily average wind velocities with those based on the original hourly observations. The daily average data were depleted of high velocity winds and sand transport estimates were accordingly much lower than those based on the hourly data. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
In arid zones, many active aeolian dunes terminate at ephemeral and perennial desert rivers. The desert rivers show very high rates of sediment transport that cause deleterious downstream effects on the river system and ecology. High sediment loading has been attributed to severe water erosion of sparsely covered watersheds during infrequent but heavy rainfall. Although aeolian erosion is known to lead to high rates of wind‐blown sand transport, direct confirmation of whether the aeolian processes accelerate or inhibit fluvial sediment loss is lacking. Here, we show that an aeolian‐fluvial cycling process is responsible for the high rate of suspended sediment transport in a Sudalaer ephemeral desert channel in the Ordos Plateau of China. Frequent aeolian processes, but low frequency (once every 3 years on average) flooding, occur in this region. Wind‐blown saltating grains appeared to be unable to cross the desert channel because of interruption of channel‐induced recirculating air flow, and therefore tended to settle in the channel during the windy seasons, leading to channel narrowing. During flooding, this narrowed channel was found to yield a threefold increase in suspended sediment loading and a 3.4‐fold increase in the weight percentage of the 0.08–0.2 mm sediment fraction on 18 July 2012. Loss of stored aeolian sand due to channel erosion accounted for about half of the total sediment yield in this watershed. These findings show that aeolian processes play an essential role in accelerating the sediment yield from a watershed characterized by aeolian‐fluvial interplay and also suggest that the drier the region and the greater the aeolian process, the more the aeolian process contributes to fluvial sediment yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investig  相似文献   

13.
The velocity of a wind‐blown sand cloud is important for studying its kinetic energy, related erosion, and control measures. PDA (particle dynamics analyser) measurement technology is used in a wind tunnel to study the probability distribution of particle velocity, variations with height of the mean velocity and particle turbulence in a sand cloud blowing over a sandy surface. The results suggest that the probability distribution of the particle velocity in a blowing sand cloud is stochastic. The probability distribution of the downwind velocity complies with a Gaussian function, while that of the vertical velocity is greatly complicated by grain impact with the bed and particle–particle collisions in the air. The probability distribution of the vertical velocity of ?ne particles (0·1–0·3 mm sands) can be expressed as a Lorentzian function while that of coarse particles (0·3–0·6 mm sands) cannot be expressed by a simple distribution function. The mean downwind velocity is generally one or two orders greater than the mean vertical velocity, but the particle turbulence in the vertical direction is at least two orders greater than that in the downwind direction. In general, the mean downwind velocity increases with height and free‐stream wind velocity, but decreases with grain size. The variation with height of the mean downwind velocity can be expressed by a power function. The particle turbulence of a blowing sand cloud in the downwind direction decreases with height. The variations with height of the mean velocity and particle turbulence in the vertical direction are very complex. It can be concluded that the velocity of a sand cloud blowing over a sandy surface is mainly in?uenced by wind velocity, grain impact with the bed and particle–particle collisions in the air. Wind velocity is the primary factor in?uencing the downwind velocity of a blowing sand cloud, while the grain impact with the bed and particle–particle collisions in the air are the primary factors responsible for the vertical velocity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Sediment budget data from an 18‐month topographic survey were analysed with data from brief experiments on wind parameters, beach moisture contents, bedforms and sand mobilization in order to monitor conditions and patterns of embryo dune development over a flat 150–1000 m wide accreting upper beach. The surface conditions over the upper beach locally affect aeolian transport, but net dune development over time depends on sustained strong winds and their orientation. Incoming marine sand supplied by storms and onshore winds is reorganized by the dominant offshore to longshore winds into elongated embryo dunes over this upper beach, imprinting a regional morphology of long‐term longshore dune ridge development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Aeolian sand transport is a widespread physical phenomenon on the surface of Earth, as well as on Mars and Titan. Accurate measurements of the components of the transport system are necessary if we are to understand the nature of the physical processes. Sand traps are typically used to measure sediment transport rates, and issues associated with the sampling efficiency of traps and the development of reliable traps have received considerable attention in recent decades. In this study, we measured aeolian transport rate at five distances from a wind tunnel sidewall using a vertically‐segmented sand trap. Total transport rates were determined by weighing the bed sediment before and after each experiment, and with and without a trap installed. The following results were obtained: (1) sand transport increased linearly with the distance away from the sidewall, and the appropriate location to measure maximum transport is within the central 20% of the wind tunnel; (2) current methods overestimate the sampling efficiency of sand traps when comparing trap data to transport rate data obtained by weighing sand moved through the entire tunnel because the effects of the sidewalls in decreasing total transport are neglected; (3) the efficiency of the vertically‐segmented trap that we tested ranged from 11.57% to 31.68% using our revised methods, whereas standard methods caused efficiency to be overestimated by 32–72% of the efficiency; (4) using either method, the efficiency of the trap increased exponentially with shear velocity for the range we used. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
In aeolian sand sheets the interaction between aeolian and subaqueous processes is considered one of the principal factors that controls this depositional environment. To examine the role played by the subaqueous processes on the construction and accumulation of sand sheets, surface deposits and subsurface sedimentary sections of a currently active aeolian sand sheet, located in the Upper Tulum Valley (Argentina), have been examined. On the sand sheet surface, airflows enable the construction of nabkhas, wind‐rippled mantles (flattened accumulations of sand forming wind ripples), megaripples, and small transverse dunes. Subaqueous deposits consist of sandy current ripples covered by muddy laminae. The latter are generated by annual widespread but low‐energy floods that emanate from the nearby mountains in the aftermath of episodes of heavy precipitations. Deposits of subaqueous origin constitute 5% of the accumulated sand sheet thickness. The construction of the sand sheet is controlled by meteorological seasonal changes: the source area, the San Juan river alluvial fan, receives sediment by thaw‐waters in spring–summer; in fall–winter, when the water table lowers in the alluvial fan, the sediment is available for aeolian transport and construction of the sand sheet area. The flood events play an important role in enabling sand sheet accumulation: the muddy laminae serve to protect the underlying deposits from aeolian winnowing. Incipient cement of gypsum on the sand and vegetation cover acts as an additional stabilizing agent that promotes accumulation. Episodic and alternating events of erosion and sedimentation are considered the main reason for the absence of soils and palaeosols. Results from this study have enabled the development of a generic model with which to account for: (i) the influence of contemporaneous subaqueous processes on the construction and accumulation in recent and ancient sand sheets; and (ii) the absence of developed soils in this unstable topographic surface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The diurnal pattern of blowing sand results from a complex process that involves an interaction between solar heating, thermal instability, atmospheric turbulence, wind strength, and surface threshold conditions. During the day, solar heating produces thermal instability, which enhances the convective mixing of high momentum winds from the upper levels of the atmosphere to the surface layer. The sun also dries the sand surface so that the critical threshold is as low as possible. Thus, in the afternoon, the combination of strong turbulent winds and a low surface threshold increases the likelihood that winds may intermittently exceed the critical threshold of the surface to produce bursts of blowing sand. Here an attempt has been made to explore this dynamic aeolian process using a new method for monitoring the diurnal pattern of blowing sand. This technique involves detecting blowing sand with a piezoelectric saltation sensor to determine the relative proportion of time that blowing sand is detected for a given ‘time of day’. Measurements taken over a seven‐month period on the high plains of the Llano Estacado of West Texas and eastern New Mexico suggest that sand movement tends to occur more frequently during daylight hours with a peak in aeolian activity occurring in the afternoon between 14:00 and 15:00 Local Standard Time (LST). Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

19.
The sound-producing mechanism of booming sand has long been a pending problem in the blown sand physics. Based on the earlier researches, the authors collected some silent sand samples from Teng- ger Desert, Australian Desert, Kuwait Desert, beaches of Hainan Island and Japanese coast as well as the soundless booming sand samples from the Mingsha Mountain in Dunhuang to make washing ex- periments. In the meantime the chemical corrosion experiment of glass micro-spheres, surface coating experiment and SEM examination were also conducted. The experimental results show that the sound production of booming sand seems to have nothing to do with the presence of SiO2 gel on the surface of sand grains and unrelated to the surface chemical composition of sand grains but is related to the resonance cavities formed by porous (pit-like) physical structure resulting from a number of factors such as wind erosion, water erosion, chemical corrosion and SiO2 gel deposition, etc. Its resonance mechanism is similar to that of Hemholz resonance cavity. Under the action of external forces, nu- merous spherical and sand grains with smooth surface and porous surface are set in motion and rub with each other to produce extremely weak vibration sound and then become audible sound by human ears through the magnification of surface cavity resonance. However the booming sands may lose their resonance mechanism and become silent sand due to the damping action caused by the invasion of finer particles such as dust and clay into surface holes of sand grains. Therefore, clearing away fine pollutants on the quartz grain surface is an effective way to make silent sand emit audible sound.  相似文献   

20.
Evidence from a field study on wind flow and sediment transport across a beach–dune system under onshore and offshore conditions (including oblique approach angles) indicates that sediment transport response on the back‐beach and stoss slope of the foredune can be exceedingly complex. The upper‐air flow – measured by a sonic anemometer at the top of a 3·5 m tower located on the dune crest – is similar to regional wind records obtained from a nearby meteorological station, but quite different from the near‐surface flow field measured locally across the beach–dune profile by sonic anemometers positioned 20 cm above the sand surface. Flow–form interaction at macro and micro scales leads to strong modulation of the near‐surface wind vectors, including wind speed reductions (due to surface roughness drag and adverse pressure effects induced by the dune) and wind speed increases (due to flow compression toward the top of the dune) as well as pronounced topographic steering during oblique wind approach angles. A conceptual model is proposed, building on the ideas of Sweet and Kocurek (Sedimentology 37 : 1023–1038, 1990), Walker and Nickling (Earth Surface Processes and Landforms 28 : 111–1124, 2002), and Lynch et al. (Earth Surface Processes and Landforms 33 : 991–1005, 2008, Geomorphology 105 : 139–146, 2010), which shows how near‐surface wind vectors are altered for four regional wind conditions: (a) onshore, detached; (b) onshore‐oblique, attached and deflected; (c) offshore, detached; and (d) offshore‐oblique, attached and deflected. High‐frequency measurements of sediment transport intensity during these different events demonstrate that predictions of sediment flux using standard equations driven by regional wind statistics would by unreliable and misleading. It is recommended that field studies routinely implement experimental designs that treat the near‐surface wind field as comprising true vector quantities (with speed and direction) in order that a more robust linkage between the regional (upper air) wind field and the sediment transport response across the beach–dune profile be established. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号