首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Based on cosmic ray data obtained by neutron monitors at the Earth's surface, and data on near-relativistic electrons measured by the WIND satellite, as well as on solar X-ray and radio burst data, the solar energetic particle (SEP) event of 2005 January 20 is studied. The results show that this event is a mixed event where the flare is dominant in the acceleration of the SEPs, the interplanetary shock accelerates mainly solar protons with energies below 130 MeV, while the relativistic protons are only accelerated by the solar flare. The interplanetary shock had an obvious acceleration effect on relativistic electrons with energies greater than 2 MeV. It was found that the solar release time for the relativistic protons was about 06:41 UT, while that for the near-relativistic electrons was about 06:39 UT. The latter turned out to be about 2 min later than the onset time of the interplanetary type III burst.  相似文献   

2.
Julius Feit 《Solar physics》1973,28(1):211-231
It has been recently suggested by several investigators that the accelerated charged particles provide the energy of the optical flare by the ionization loss process. We have examined this mechanism assuming different forms of the spectrum of the accelerated protons at lower chromosphere. The flux and the energy spectrum of protons of energy 0.1–100 MeV have been calculated at successive heights, from 103 to 40 × 103 km from the solar surface taking into account the ionization loss, pitch angle distribution and density distribution of the neutral and ionized hydrogen in the chromosphere and lower corona. Hence the energy spectrum of the protons escaping from the Sun and the amount of energy dissipated in the solar chromosphere are computed. Comparing the calculated results with the observational data on the solar event of September 28, 1961 it is found that the ionization loss of the accelerated protons and heavier nuclei in the solar atmosphere may supply a significant part of the energy of the optical flare assuming that the fraction, f, of magnetic tubes of force extending out of the solar atmosphere is about 1 %. The accelerated proton spectrum in the form of power law in kinetic energy seems to be the most appropriate form. In the event of September 28, 1961 best estimates are made on this basis of the total number and the energy spectrum of protons at injection, the flux and energy spectrum of escaping protons and the energy dissipated in the solar atmosphere by the accelerated ions. It is found that the possible range of variation of the height of injection level hardly affects the total energy dissipated. The high variability of the intensity of protons released by the Sun is interpreted in terms of the variations of the parameter, f, determined by the configurations of the magnetic field lines.Preliminary results were presented at the International Symposium on Solar-Terrestrial Physics, Leningrad, May, 1970.Presently at NASA/Goddard Space Flight Center, Greenbelt, Maryland, U.S.A., on leave from T.I.F.R., Bombay.  相似文献   

3.
The data on optical, X-ray and gamma emission from proton flares, as well as direct observations of flare-associated phenomena, show energetic proton acceleration in the corona rather than in the flare region. In the present paper, the acceleration of protons and accompanying relativistic electrons is accounted for by a shock wave arising during the development of a large flare. We deal with a regular acceleration mechanism due to multiple reflection of resonance protons and fast electrons from a collisionless shock wave front which serves as a moving mirror. The height of the most effective acceleration in the solar corona is determined. The accelerated particle energy and density are estimated. It is shown in particular that a transverse collisionless shock wave may produce the required flux of protons with energy of 10 MeV and of relativistic electrons of 1–10 MeV.The proposed scheme may also serve as an injection mechanism when the protons are accelerated up to relativistic energies by other methods.  相似文献   

4.

Crossings of the heliospheric current sheet (HCS) at the Earth’s orbit are often associated with observations of anisotropic beams of energetic protons accelerated to energies from hundreds of keV to several MeV and above. A connection between this phenomenon and the occurrence of small-scale magnetic islands (SMIs) near reconnecting current sheets has recently been found. This study shows how pre-accelerated protons can be energized additionally due to oscillations of multiple SMIs inside the ripple of the reconnecting HCS. A model of the electromagnetic field of an oscillating 3D SMI with a characteristic size of ~0.001 AU is developed. A SMI is supposed to be bombarded by protons accelerated by magnetic reconnection at the HCS to energies from ~1keV to tens of keV. Numerical simulations have demonstrated that the resulting longitudinal inductive electric fields can additionally reaccelerate protons injected into a SMI. It is shown that there is a local “acceleration” region within the island in which particles gain energy most effectively. As a result, their average escape energies range from hundreds of keV to 2 MeV and above. There is almost no particle acceleration outside the region. It is shown that energies gained by protons significantly depend on the initial phase and the place of their entry into a SMI but weakly depend on the initial energy. Therefore, low-energy particles can be accelerated more efficiently than high-energy particles, and all particles can reach the total energy limit upon their escape from a SMI. It is also found that the escape velocity possesses a strong directional anisotropy. The results are consistent with observations in the solar wind plasma.

  相似文献   

5.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

6.
This paper discusses the relationship between some characteristics of microwave type IV radio bursts and solar cosmic ray protons of MeV energy. It is shown that the peak flux intensity of those bursts is almost linearly correlated with the MeV proton peak flux observed by satellites near the Earth and that protons and electrons would be accelerated simultaneously by a similar mechanism during the explosive phase of solar flares.Brief discussion is given on the propagation of solar cosmic rays in the solar envelope after ejection from the flare regions.  相似文献   

7.
The possibility of accelerated protons in solar flares having a sharp change in their spectral index is discussed. The analysis is based on the Tsytovich (1982, 1984, 1987a, b, c) acceleration model by MHD turbulence, which is shown to have different resonant conditions for non-relativistic and relativistic particles. The different resonant condition is shown to result in a sharp change in the accelerated proton spectral index, even in the absence of any peculiarity in the spectra of the MHD turbulence. Time scales for accelerated protons to relativistic energies are also derived, and shown to be consistent with observations. We also show that the threshold energy for electron acceleration by low frequency MHD turbulence is much greater than for proton acceleration. The turbulence therefore preferentially accelerates protons.  相似文献   

8.
The series of nine impulsive, highly collimated beams of near-relativistic electrons seen by ACE/EPAM on 26 and 27 June 2004 occurred at a quiet time with respect to solar flare and CME production. However, they were accompanied by decametric type III radio bursts observed by WIND/WAVES, which had progressively higher starting frequencies, suggestive of coronal acceleration. There were no CMEs seen by SOHO/LASCO in association with any of the type III bursts except possibly the first. The energy spectrum of the electrons was soft, typically E−4.5 but extended up to at least ∼200 keV. We suggest that the source region for these events is in the high corona. We discuss this result in the context of solar electron acceleration at other times.  相似文献   

9.
We find that gamma-ray line (GRL) emissions start later than the hard X-ray (HXR) emissions during impulsive and extended solar flares. Starting delay is more in the case of extended solar flares suggesting a slow acceleration of electrons and ions, in comparison to impulsive solar flares which indicate different acceleration mechanism for impulsive and extended solar flares. We further infer that during solar flares, electrons and ions are accelerated simultaneously and the delay between HXR and GRL emissions results mainly due to differences in acceleration times of electrons and ions to attain energies required for producing HXR emissions for electrons and GRL emissions for ions. Therefore, we are of view that a single step acceleration mechanism may work in solar flares.  相似文献   

10.
Heating and acceleration of electrons in solar impulsive hard X-ray (HXR) flares are studied according to the two-stage acceleration model developed by Zhang for solar 3He-rich events. It is shown that electrostatic H-cyclotron waves can be excited at a parallel phase velocity less than about the electron thermal velocity and thus can significantly heat the electrons (up to 40 MK) through Landau resonance. The preheated electrons with velocities above a threshold are further accelerated to high energies in the flare-acceleration process. The flare-produced electron spectrum is obtained and shown to be thermal at low energies and power law at high energies. In the non-thermal energy range, the spectrum can be double power law if the spectral power index is energy dependent or related. The electron energy spectrum obtained by this study agrees quantitatively with the result derived from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) HXR observations in the flare of 2002 July 23. The total flux and energy flux of electrons accelerated in the solar flare also agree with the measurements.  相似文献   

11.
Observations of interplanetary relativistic electrons from several solar-flare events monitored through 1964 to mid-1967 are presented. These are the first direct spectral measurements and time histories, made outside the magnetosphere, of solar-flare electrons having relativistic velocities. The 3- to 12-MeV electrons detected have kinetic energies about two orders of magnitude higher than those solar electrons previously studied in space, and measurements of both the time histories and energy spectra for a number of events in the present solar cycle were carried out. These measurements of interplanetary electrons are also directly compared with solar X-ray data and with measurements of related interplanetary solar protons.The time histories of at least four electron events show fits to the typical diffusion picture. A demonstrated similarity between the electron and the medium-energy proton fits for the event of 7 July, in particular, indicates that at these electron energies, but over several orders of magnitude of rigidity, whatever diffusion does take place is very nearly on a velocity, rather than a rigidity or an energy, basis. Diffusion-fit time histories varied as a function of T 0 also indicate that the electrons in certain flare events originate at times near the X-ray and microwave burst, establishing their likely identity as the same electrons which cause the impulsive radiations. Also, the energy spectra and total numbers of the interplanetary electrons, compared with those of the flare-site electrons calculated from X-ray and microwave measurements, indicate that probably a small fraction of flare electrons escape into interplanetary space.  相似文献   

12.
Using realistic models of cosmic-ray propagation in interplanetary space we present, for electrons, protons and helium nuclei of a given energy near Earth, calculations of their distribution in energy before entering the solar cavity and their mean energy loss. Interplanetary conditions appropriate for the epochs 1965 and 1969 have been used. Cosmic-ray energies in the range of 20 MeV/nucleon to 1000 MeV/nucleon have been considered.  相似文献   

13.
We analyze the observations of solar protons with energies >80 MeV near the Earth and the January 20, 2005, solar flare in various ranges of the electromagnetic spectrum. Within approximately the first 30 min after their escape into interplanetary space, the solar protons with energies above 80 MeV propagated without scattering to the Earth and their time profiles were determined only by the time profile of the source on the Sun and its energy spectrum. The 80–165 MeV proton injection function was nonzero beginning at 06:43:80 UT and can be represented as the product of the temporal part, the ACS (Anticoincidence System) SPI (Spectrometer on INTEGRAL) count rate, and the energy part, a power-law proton spectrum ~E ?4.7±0.1. Protons with energies above 165 MeV and relativistic electrons were injected, respectively, 4 and 9 min later than this time. The close correlation between high-energy solar electromagnetic emission and solar proton fluxes near the Earth is evidence for prolonged and multiple proton acceleration in solar flares. The formation of a posteruptive loop system was most likely accompanied by successive energy releases and acceleration of charged particles with various energies. Our results are in conflict with the ideas of cosmic-ray acceleration in gradual solar particle events at the shock wave driven by a coronal mass ejection.  相似文献   

14.
Solar flare gamma-ray emissions from energetic ions and electrons have been detected and measured to GeV energies since 1980. In addition, neutrons produced in solar flares with 100 MeV to GeV energies have been observed at the Earth. These emis-sions are produced by the highest energy ions and electrons accelerated at the Sun and they provide our only direct (albeit secondary) knowledge about the properties of the acceler-ator(s) acting in a solar flare. The solar flares, which have direct evidence for pion-decaygamma-rays, are unique and are the focus of this paper. We review our current knowl-edge of the highest energy solar emissions, and how the characteristics of the acceleration process are deduced from the observations. Results from the RHESSI, INTEGRAL and CORONAS missions will also be covered. The review will also cover the solar flare ca-pabilities of the new mission, FERMI GAMMA RAY SPACE TELESCOPE, launched on 2008 June 11. Finally, we discuss the requirements for future missions to advance this vital area of solar flare physics.  相似文献   

15.
Dayside low altitude satellite observations of the pitch angle and energy distribution of electrons and protons in the energy range 1 eV to 100 eV during quite geomagnetic conditions reveal that at times there is a clear latitudinal separation between the precipitating low energy (keV) electrons and protons, with the protons precipitating poleward of the electrons. The high energy (100 keV) proton precipitation overlaps both the low energy (keV) electron and proton precipitation. These observations are consistent with a model where magnetosheath particles stream in along the cusp field lines and are at the same time convected poleward by an electric field.The electrons with energies of a few keV move fast and give the “ionospheric footprint” of the distant cusp. The protons are partly convected poleward of the cusp and into the polar cap. Here the mirroring protons populate the plasma mantle. Equatorward of the cusp the pitch angle distribution of both electrons and protons with energies above a few keV is pancake shaped indicating closed geomagnetic field lines. The 1 keV electrons, penetrate, however, into this region of closed field line structure maintaining an isotropic pitch angle distribution. The intensity is, however, reduced with respect to what it was in the cusp region. It is suggested that these electrons, the lowest energies measured on the satellite, are associated with the entry layer.  相似文献   

16.
Role of many-body interactions on the energy loss of electrons accelerated at neutral point during solar flares has been studied. Energy loss with and without many-body interactions has been computed for different electron-density models as function of height. The energy loss increases by a factor of two by inclusion of many-body interactions for incident electron energies greater than 10 keV. Role of this on the generation of hard X-rays is discussed.  相似文献   

17.
A new series of solar flare energetic X-ray events has been detected by an ionization chamber on the OGO-I and OGO-III satellites in free space. These X-rays lie in the range 10–50 keV, and a study has been made of their relationship to 3 and 10 cm radio bursts and with the emission of electrons and protons observed in space. The onset times, times of maximum intensity and total duration are very similar for the radio and X-ray emission. Also, the average decay is similar and usually follows an exponential type behavior. However, this good correlation applies most often to the flash phase of flares, whereas subsequent surges of activity from the same eruption may produce microwave emission or further X-ray bursts not closely correlated. An approximate proportionality is found between the total energy content of the X-rays and of the 3 and 10 cm integrated radio fluxes. These measurements suggest that the X-ray and microwave emission have a common energizing process which determines the time profile of both. The recording of electrons greater than 40 keV by the Interplanetary Monitoring Probe (IMP satellite) has been found to correlate very well with flares producing X-ray and microwave emission provided the propagation path to the sun is favorable. There is evidence that the acceleration of solar protons may not be closely associated with the processes responsible for the production of microwaves, X-rays, and interplanetary electrons.The OGO ionization chamber responds to energies (10–50 keV) intermediate between the soft X-rays giving SID disturbances (1–10 keV) and energetic quanta previously measured with balloons (50–500 keV). Proposed source mechanisms should be capable of covering this range of energies including the most energetic quanta occasionally observed.  相似文献   

18.
We present a study of seven large solar proton events in the current solar cycle 24(from 2009 January up to the current date). They were recorded by the GOES spacecraft with the highest proton fluxes being over 200 pfu for energies 10 Me V. In situ particle measurements show that:(1) The profiles of the proton fluxes are highly dependent on the locations of their solar sources, namely flares or coronal mass ejections(CMEs), which confirms the "heliolongitude rules" associated with solar energetic particle fluxes;(2) The solar particle release(SPR) times fall in the decay phase of the flare emission, and are in accordance with the times when the CMEs travel to an average height of 7.9 solar radii; and(3) The time differences between the SPR and the flare peak are also dependent on the locations of the solar active regions. The results tend to support the scenario of proton acceleration by the CME-driven shock,even though there exists a possibility of particle acceleration at the flare site, with subsequent perpendicular diffusion of accelerated particles in the interplanetary magnetic field. We derive the integral time-of-maximum spectra of solar protons in two forms: a single power-law distribution and a power law roll-over with an exponential tail. It is found that the unique ground level enhancement that occurred in the event on 2012 May 17 displays the hardest spectrum and the largest roll-over energy which may explain why this event could extend to relativistic energies.  相似文献   

19.
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced.  相似文献   

20.
We present the analysis of a large solar near-relativistic electron event observed by the Ulysses and the ACE spacecraft on 8 November 2000, when Ulysses was located at a heliocentric distance of 2.4 AU and at a heliographic latitude of ??80° S. We use a particle propagation model to infer the local interplanetary transport conditions and the injection histories of the near-relativistic electrons observed by both spacecraft. We find different local transport conditions for each set of observations. The inferred injection profiles for both spacecraft extend for several hours; but the injection at Ulysses was smaller and started later. The association with type II radio emission suggests that the heliospheric electrons were provided by coronal shock acceleration. An analysis of the in situ magnetic field and plasma measurements indicates that the global configuration of the heliosphere (disturbed by transient structures) could play a role in shaping the characteristics of solar energetic particle events observed from different locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号