首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The assessment of seismic design codes has been the subject of intensive research work in an effort to reveal weak points that originated from the limitations in predicting with acceptable precision the response of the structures under moderate or severe earthquakes. The objective of this work is to evaluate the European seismic design code, i.e. the Eurocode 8 (EC8), when used for the design of 3D reinforced concrete buildings, versus a performance‐based design (PBD) procedure, in the framework of a multi‐objective optimization concept. The initial construction cost and the maximum interstorey drift for the 10/50 hazard level are the two objectives considered for the formulation of the multi‐objective optimization problem. The solution of such optimization problems is represented by the Pareto front curve which is the geometric locus of all Pareto optimum solutions. Limit‐state fragility curves for selected designs, taken from the Pareto front curves of the EC8 and PBD formulations, are developed for assessing the two seismic design procedures. Through this comparison it was found that a linear analysis in conjunction with the behaviour factor q of EC8 cannot capture the nonlinear behaviour of an RC structure. Consequently the corrected EC8 Pareto front curve, using the nonlinear static procedure, differs significantly with regard to the corresponding Pareto front obtained according to EC8. Furthermore, similar designs, with respect to the initial construction cost, obtained through the EC8 and PBD formulations were found to exhibit different maximum interstorey drift and limit‐state fragility curves. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In the framework of the revision of Part 1 of Eurocode 8, this study aims at developing new empirical correlations to compute peak values of ground velocity (PGV) and displacement (PGD) as a function of elastic spectral ordinates for design. At variance with the expressions for PGV and PGD currently adopted in the Eurocode 8, based solely on the peak ground acceleration (PGA), in this paper reference is made to spectral ordinates of the short and intermediate period range, namely Ss, which is the constant acceleration spectral ordinate, and S1, which is the spectral ordinate at 1 s. On the one hand, a relationship between PGV and the product (Ss?S1) was found based on the regression analysis on a high‐quality strong‐motion dataset. On the other hand, the PGD was estimated by extrapolating to long periods the constant displacement branch of the elastic response spectrum, introducing a correlation between the corner period TD and S1. For this purpose, results of a long period probabilistic seismic hazard assessment study for Italy, encompassing low to high seismicity areas, were considered. Furthermore, verification of the proposed relationship against strong‐motion records was carried out, and differences justified in terms of the concept of uniform hazard spectrum.  相似文献   

3.
Between the late nineteenth century and the early twentieth century, Barcelona was expanded, occupying the terrains connecting the old walled city and the nearby towns of the plateau of Barcelona. At that time, a large number of unreinforced masonry buildings were constructed and nowadays many of them are still used as dwellings. Though built individually, these buildings are connected to adjacent buildings, forming blocks composed of aggregates. In order to analyze the seismic behavior of isolated buildings and aggregates, two typical central buildings and one typical corner building have been chosen. The two central buildings and the corner building are referred as C1, C2, and E buildings. Two corner buildings and two central buildings have been connected in order to simulate a block side. This aggregate is referred as AGG and it is composed by the following sequence of individual buildings: E-C1-C2-E. Original plans and drawings of existing buildings are then used to model these buildings. The modeled buildings have five stories. Standard pushover analyses lead to evaluate their seismic performance by means of capacity spectra and fragility curves. The analysis has been carried out in the parallel (Ux) and transversal (Uy) directions to the street. Then, a capacity spectrum based method is used to analyze the seismic behavior of these buildings considered as individual buildings and as an aggregate. Two earthquake scenarios are considered. The first one is a deterministic scenario which is based on a historical earthquake occurred in 1,824, 25 km away from the city and the second one is a probabilistic scenario, which represents the ground motion with a probability of occurrence of 10% in 50 years. The soil local effects have been also considered and both scenarios have been used to assess the expected damage. Four non-null damage states are considered: slight (1), moderate (2), severe (3) and extensive-to-collapse (4). For the type of soil where most of the buildings are, and in the Ux direction, the four buildings show a similar behavior. The mean damage grade is 2.3 for the deterministic scenario and 2.7 for the probabilistic one. This means that moderate to severe damage is expected in both cases; furthermore, in the case of the deterministic scenario more than 10% of the buildings would suffer extensive-to-collapse damage and nearly 20% for the probabilistic scenario, confirming the high vulnerability of such buildings. The differences in the expected damage are due to the significant different characteristics of the response spectra of the earthquake scenarios in the range of the fundamental periods of the buildings.  相似文献   

4.
This paper evaluates a recent record selection and scaling procedure of the authors that can determine the probabilistic structural response of buildings behaving either in the elastic or post‐elastic range. This feature marks a significant strength on the procedure as the probabilistic structural response distribution conveys important information on probability‐based damage assessment. The paper presents case studies that show the utilization of the proposed record selection and scaling procedure as a tool for the estimation of damage states and derivation of site‐specific and region‐specific fragility functions. The method can be used to describe exceedance probabilities of damage limits under a certain target hazard level with known annual exceedance rate (via probabilistic seismic hazard assessment). Thus, the resulting fragility models can relate the seismicity of the region (or a site) with the resulting building performance in a more accurate manner. Under this context, this simple and computationally efficient record selection and scaling procedure can be benefitted significantly by probability‐based risk assessment methods that have started to be considered as indispensable for developing robust earthquake loss models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The basic objective of this study is the assessment of the European seismic design codes and in particular of EC2 and EC8 with respect to the recommended behaviour factor q. The assessment is performed on two reinforced concrete multi-storey buildings, having symmetrical and non-symmetrical plan view respectively, which were optimally designed under four different values of the behaviour factor. In the mathematical formulation of the optimization problem the initial construction cost is considered as the objective function to be minimized while the cross sections and steel reinforcement of the beams and the columns constitute the design variables. The provisions of Eurocodes 2 and 8 are imposed as constraints to the optimization problem. Life-cycle cost analysis, in conjunction with structural optimization, is believed to be a reliable procedure for assessing the performance of structures during their life time. The two most important findings that can be deduced are summarized as follows: (1) The proposed Eurocode behaviour factor does not lead to a more economical design with respect to the total life-cycle cost compared to other values of q (q = 1, 2). (2) The differences of the total life-cycle cost values may be substantially greater than those observed for the initial construction cost for four different q (q = 1, 2, 3, 4).  相似文献   

6.
A refined probabilistic assessment of seismic demands and fracture capacity of welded column splice (WCS) connections in welded steel moment resisting frames (WSMRFs) is presented. Seismic demand assessment is performed through cloud-based nonlinear time history analysis (NLTHA) for two case-study structures, i.e., a 4- and a 20- story WSMRFs. Results from NLTHA are used to derive fracture fragility of WCS connections. To this aim, the study investigates (1) optimal ground-motion intensity measures for conditioning probabilistic seismic demand models in terms of global (i.e., maximum inter-story drift ratio) and local (i.e., peak tensile stress in the flange of WCSs) engineering demand parameters of WSMRFs; (2) the effect of ground-motion vertical components on the longitudinal flange stress of WCS connections and their resulting fracture fragility; and (3) the effect of WCS capacity uncertainties on the fracture fragility estimates of those connections. For the latter case, an advanced finite element fracture mechanics-based approach proposed by the authors is employed to capture aleatory and epistemic uncertainties affecting fracture capacities. The focus is on pre-Northridge WCS connections featuring partial joint penetration and brittle materials, making them highly vulnerable to seismic fracture. Fracture fragility results for the case-study structures are compared and discussed, highlighting the importance of the considered issues on fragility estimates, particularly in the case of high-rise structures. Findings from the study contribute shedding some light on the influence of seismic demand and capacity uncertainties on the assessment of fracture fragility of WCS connections. These findings can guide similar performance-based assessment exercises for WSMRFs to inform, for instance, the planning and design of retrofitting strategies for those vulnerable connections.  相似文献   

7.
Given the importance that traditional force-based seismic design still currently exhibits, studies addressing issues related to the definition of the behaviour factor values are considered to be of most interest. A probabilistic methodology is proposed for the calibration of the q-factor relating its value with two fundamental parameters, the displacement ductility capacity measured at a relevant location of the structure and the failure probability P f . The general foundation of this procedure is based on the probabilistic quantification of the seismic action and, by applying a transformation procedure, of the structural seismic demand in terms of displacement ductility. By recalling well established structural reliability procedures and by making use of nonlinear analysis methods, both static and dynamic, a general probabilistic framework, which is able to relate the ductility capacity, the failure probability P f and the behaviour factor, is defined. In order to illustrate some of the potentialities of the methodology, an application example is presented, addressing the q-factor assessment for a set of regular and irregular reinforced concrete frame structures, enforcing a given P f and two different ductility levels.  相似文献   

8.
The structural safety assessment procedures proposed in Part 3 of Eurocode 8 (EC8‐3) for the case of reinforced concrete structures are addressed. The practical evaluation of the member chord rotation demand according to EC8‐3 is examined in detail along with several alternative formulations. The need for these formulations is demonstrated by presenting example situations where the EC8‐3 proposal is difficult to apply. The effectiveness of the proposed approaches is assessed through an example application and recommendations for their practical use are defined. Given the importance of the shear span in this context, a sensitivity analysis of the EC8‐3 capacity models with respect to this parameter is carried out and discussed in a later section. This analysis aims to assess the validity of the simplifications proposed by a previous research study for the quantification of the EC8‐3 capacity values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In a related study developed by the authors, building fragility is represented by intensity‐specific distributions of damage exceedance probability of various damage states. The contribution of the latter has been demonstrated in the context of loss estimation of building portfolios, where it is shown that the proposed concept of conditional fragility functions provides the link between seismic intensity and the uncertainty in damage exceedance probabilities. In the present study, this methodology is extended to the definition of building vulnerability, whereby vulnerability functions are characterized by hazard‐consistent distributions of damage ratio per level of primary seismic intensity parameter—Sa(T1). The latter is further included in a loss assessment framework, in which the impact of variability and spatial correlation of damage ratio in the probabilistic evaluation of seismic loss is accounted for, using test‐bed portfolios of 2, 5, and 8‐story precode reinforced concrete buildings located in the district of Lisbon, Portugal. This methodology is evaluated in comparison with current state‐of‐the‐art methods of vulnerability and loss calculation, highlighting the discrepancies that can arise in loss estimates when the variability and spatial distributions of damage ratio, influenced by ground motion properties other than the considered primary intensity measure, are not taken into account.  相似文献   

10.
We have developed a thermodynamic model for the determination of the closure temperature (TC) at which the minerals defining an internal isochron in RbSr, or similar, geochronological system were set with a geochronological clock. It is shown that the equilibrium fractionation of87Rb and87Sr between a pair of minerals at TC [KD(87Rb87Sr)C] is given by the ratio of the quantity (87Rb/86Sr) in the two minerals as measured at the present time. KD(87Rb-87Sr), which equals the element distribution coefficient KD(RbSr) under equilibrium condition, can be calibrated as a function of temperature, and compared with the retrieved value of KD(87Rb87Sr)C in a natural pair to obtain TC. The various mineral pairs defining an internal isochron will yield concordant or discordant values of TC depending on whether or not they closed simultaneously with respect to the diffusion of Rb and Sr. Both types of results are expected, and are important in the analyses of the evolutionary history of the host rocks. Preliminary analyses of the published data in the RbSr system suggest a fairly wide range of TC even for the same mineral pair, reflecting differences in the cooling rates and physico-chemical environments of the host rocks.  相似文献   

11.
Fragility curves for risk-targeted seismic design maps   总被引:1,自引:0,他引:1  
Seismic design using maps based on “risk-targeting” would lead to an annual probability of attaining or exceeding a certain damage state that is uniform over an entire territory. These maps are based on convolving seismic hazard curves from a standard probabilistic analysis with the derivative of fragility curves expressing the chance for a code-designed structure to attain or exceed a certain damage state given a level of input motion, e.g. peak ground acceleration (PGA). There are few published fragility curves for structures respecting the Eurocodes (ECs, principally EC8 for seismic design) that can be used for the development of risk-targeted design maps for Europe. In this article a set of fragility curves for a regular three-storey reinforced-concrete building designed using EC2 and EC8 for medium ductility and increasing levels of design acceleration \((\hbox {a}_\mathrm{g})\) is developed. These curves show that structures designed using EC8 against PGAs up to about 1 m/s \(^{2}\) have similar fragilities to those that respect only EC2 (although this conclusion may not hold for irregular buildings, other geometries or materials). From these curves, the probability of yielding for a structure subjected to a PGA equal to \(\hbox {a}_\mathrm{g}\) varies between 0.14 ( \(\hbox {a}_\mathrm{g}=0.7\) m/s \(^{2})\) and 0.85 ( \(\hbox {a}_\mathrm{g}=3\) m/s \(^{2})\) whereas the probability of collapse for a structure subjected to a PGA equal to \(\hbox {a}_\mathrm{g}\) varies between 1.7 \(\times 10^{-7}\) ( \(\hbox {a}_\mathrm{g}=0.7\) m/s \(^{2})\) and 1.0 \(\times 10^{-5}\) ( \(\hbox {a}_\mathrm{g}=3\) m/s \(^{2})\) .  相似文献   

12.
A multi‐level seismic vulnerability assessment of reinforced concrete moment frame buildings located in moderate seismic zones (0.25g) is performed on a set of ductile versions of low‐ to mid‐rise two‐dimensional moment frames. The study is illustrated through application to comparative trial designs of two (4‐ and 8‐story) buildings adopting both space‐ and perimeter‐framed approaches. All frames are dimensioned as per the emerging version of the seismic design code in Egypt. These new seismic provisions are in line with current European norms for seismic design of buildings. Code‐compliant designs (CCD), as well as a proposed modified code design relaxing design drift demands for the investigated buildings, are examined to test their effectiveness and reliability. Applying nonlinear inelastic incremental dynamic analyses, fragility curves (FC) for the frames are developed corresponding to various code‐specified performance levels. Code preset lower and upper bounds on design acceleration and drift, respectively, are also addressed along with their implications, if imposed, on the frames seismic performance and vulnerability. Annual spectral acceleration hazard curves for the case study frames are also generated. Estimates for mean annual frequency (MAF) of exceeding various performance levels are then computed through an integration process of the data resulting from the FC with the site hazard curves. The study demonstrates that the proposed design procedure relaxing design drift demands delivers more economic building designs relative to CCDs, yet without risking the global safety of the structure. The relaxed design technique suggested herein, even though scoring higher, as expected by intuition, MAF of exceeding various code‐limiting performance levels expressed in terms of interstory drift ratios, still guarantees a reasonably acceptable actual margin against violating code limits for such levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In seismic risk assessment of structures, fragility functions are the probabilistic characterization of vulnerability at the component and/or structural level, expressing the probability of failure as a function of a ground motion intensity measure (IM). Fragility curves, in general, are structure- and site-specific, thus a comparison of fragility curves, then of vulnerability, is not straightforward across multiple structures. Also, it could be the case that hazard at a site of interest is not available for the IM originally considered in the fragility assessment. These situations require to convert fragility curves from an original IM to a target one. The present study addresses a hazard-consistent probabilistic framework for converting spectral acceleration-based IMs from an original IM to a target IM at a given site. In particular, three conversion cases, under different assumptions on the explanatory power of the involved IMs with respect to structural failure, are discussed: (a) a vector-valued IM consisting of the original and target IMs, magnitude, and source-to-site distance; (b) a vector-valued IM consisting of the original and target IMs; and (c) the original (scalar) IM only, assuming that structural response, given the IM, is statistically independent of the other ground motion variables. In this framework, the original fragility functions are characterized using the state-of-the-art methods in performance-based earthquake engineering, then the fragility curves as a function of the target IM are evaluated through applications of the probability calculus rules, ensuring consistency with the seismic hazard at the site of interest. The conversion strategy is illustrated through the applications to three-, six-, and nine-story Italian code-conforming reinforced concrete buildings designed for a high-hazard site in Italy. The study shows that, in most of the cases, the converted fragility curves have agreement with the reference curves directly developed in terms of the target IM. Cases in which least agreement was found are likely due to the models used to obtain the terms required by the conversion equations.  相似文献   

14.
By measuring carbon and hydrogen isotope compositions for C1, C2 and C3 of 74 gas samples, natural gases from the Tarim Basin can be divided into six groups on the basis of their origins: (1) coal-type gas derived from coal measures; (2) coal-type gas generated from the T-J lacustrine mudstones; (3) oil-type gas derived from the Cambrian and low Ordovician marine source rocks; (4) oil-type gas from the source rocks deposited in the marine-transitional facies; (5) mixing gas between gas derived from the Carboniferous transitional source rocks and the Mesozoic humic gas, and (6) mixing gases of thermal genetic gas and little deep gas in the Southwest depression of the Tarim Basin. The δ D values of methane in natural gases originating from different type kerogens are affected by both palaeo-environments of the source rock formation (kerogen types) and thermal maturity, with sedimentary environment (kerogen type) as the main controlling factor. Under the similar thermal maturity, the hydrogen isotope composition of methane is more enriched in deuterium in marine environments than lacustrine one. With the increase of thermal maturity and the increase of carbon atomic numbers of gaseous alkanes, the hydrogen isotopes become enriched in deuterium. The δ D values of ethane and propane (δ D2, δ D3) are controlled mainly by thermal maturity and to a lesser degree by sedimentary environment of the source rock formation. The partial reversal of hydrogen isotopes for gaseous alkanes would be related to the microbial oxidation, mixing of sapropelic and humic gases and / or mixing of gases from similar kerogen sources with various thermal maturities. In the oil-type gas, the sulfate reduction reaction would result in the reversed order of δ D1 and δ D2 (e.g. δ D1>δ D2).  相似文献   

15.
We examined how the projected increase in atmospheric CO2 and concomitant shifts in air temperature and precipitation affect water and carbon fluxes in an Asian tropical rainforest, using a combination of field measurements, simplified hydrological and carbon models, and Global Climate Model (GCM) projections. The model links the canopy photosynthetic flux with transpiration via a bulk canopy conductance and semi-empirical models of intercellular CO2 concentration, with the transpiration rate determined from a hydrologic balance model. The primary forcing to the hydrologic model are current and projected rainfall statistics. A main novelty in this analysis is that the effect of increased air temperature on vapor pressure deficit (D) and the effects of shifts in precipitation statistics on net radiation are explicitly considered. The model is validated against field measurements conducted in a tropical rainforest in Sarawak, Malaysia under current climate conditions. On the basis of this model and projected shifts in climatic statistics by GCM, we compute the probability distribution of soil moisture and other hydrologic fluxes. Regardless of projected and computed shifts in soil moisture, radiation and mean air temperature, transpiration was not appreciably altered. Despite increases in atmospheric CO2 concentration (Ca) and unchanged transpiration, canopy photosynthesis does not significantly increase if Ci/Ca is assumed constant independent of D (where Ci is the bulk canopy intercellular CO2 concentration). However, photosynthesis increased by a factor of 1.5 if Ci/Ca decreased linearly with D as derived from Leuning stomatal conductance formulation [R. Leuning. Plant Cell Environ 1995;18:339–55]. How elevated atmospheric CO2 alters the relationship between Ci/Ca and D needs to be further investigated under elevated atmospheric CO2 given its consequence on photosynthesis (and concomitant carbon sink) projections.  相似文献   

16.
Recent seismicity in the northeast India and its adjoining region exhibits different earthquake mechanisms – predominantly thrust faulting on the eastern boundary, normal faulting in the upper Himalaya, and strike slip in the remaining areas. A homogenized catalogue in moment magnitude, M W, covering a period from 1906 to 2006 is derived from International Seismological Center (ISC) catalogue, and Global Centroid Moment Tensor (GCMT) database. Owing to significant and stable earthquake recordings as seen from 1964 onwards, the seismicity in the region is analyzed for the period with spatial distribution of magnitude of completeness m t, b value, a value, and correlation fractal dimension D C. The estimated value of m t is found to vary between 4.0 and 4.8. The a value is seen to vary from 4.47 to 8.59 while b value ranges from 0.61 to 1.36. Thrust zones are seen to exhibit predominantly lower b value distribution while strike-slip and normal faulting regimes are associated with moderate to higher b value distribution. D C is found to vary from 0.70 to 1.66. Although the correlation between spatial distribution of b value and D C is seen predominantly negative, positive correlations can also be observed in some parts of this territory. A major observation is the strikingly negative correlation with low b value in the eastern boundary thrust region implying a possible case of extending asperity. Incidentally, application of box counting method on fault segments of the study region indicates comparatively higher fractal dimension, D, suggesting an inclination towards a planar geometrical coverage in the 2D spatial extent. Finally, four broad seismic source zones are demarcated based on the estimated spatial seismicity patterns in collaboration with the underlying active fault networks. The present work appraises the seismicity scenario in fulfillment of a basic groundwork for seismic hazard assessment in this earthquake province of the country.  相似文献   

17.
18.
A theoretical equation was developed to express the time variation of drainage density in a basin or geomorphic surface: Di(t, T) is the drainage density at time T on the i-th basin or geomorphic surface, which was formed at time t; β(τ) is a factor related to the erosional force causing the development of the rivers of the basin or surface at time τ; δi is the maximum drainage density; and Di is the initial drainage density on the i-th geomorphic surface or basin. The equation is based on the assumption that the drainage density increases with time until it reaches a specific upper limit δi(t)), the maximum drainage density, which is related to certain physical properties of the basin. The equations for various dated basins or geomorphic surfaces can be combined into one modified equation if the same relative erosional forces have acted on those basins or surfaces (β(t) = β(t) and if the basins or surfaces have the same physical properties δi(t) = δi(t), (Di = D0). The application of this equation to coastal terraces and glacial tills shows that the model is compatible with observed drainage densities on various dated basins or surfaces.  相似文献   

19.
Seismic fragility curves provide a powerful tool to assess the reliability of structures. However, conventional fragility analysis of structures comprising a large number of components requires enormous computational efforts. In this paper, the application of probabilistic support vector machines (PSVM) for the system fragility analysis of existing structures is proposed. It is demonstrated that support vector machine based fragility curves provide accurate predictions compared to rigorous methodologies such as component based fragilities developed by Monte Carlo simulations. The proposed method is applied to an existing bridge structure in order to develop fragility curves for serviceability and collapse limit states. In addition, the efficiency of using the PSVM method in the application of vector-valued ground motion intensity measures (IM) as well as traditional single-valued IM are investigated. The results obtained from an incremental dynamic analysis of the structure are used to train PSVMs. The application of PSVM in binary and multi-class classifications is used for the fragility analysis and reliability assessment of the bridge structure.  相似文献   

20.
Probabilistic fragility functions have been developed for low-rise, reinforced concrete buildings subjected to earthquake triggered slow-moving slides, applying a recently published methodology by the same authors [5] (Fotopoulou and Pitilakis, 2012). We performed an extensive numerical parametric study considering different idealized slope configurations, soil and geological settings, as well as distances of the structure to the slope's crest and foundation typologies. Various features of the structural damage are explored, highlighting trends on the building's behavior to the permanent co-seismic slope deformations. The proposed generalized probabilistic fragility curves have been developed as a function of the expected outcrop peak ground acceleration (PGA) as provided by modern seismic codes, i.e. EC8, or the induced permanent slope ground displacements (PGD) for different slope angles, water table level and soil type, foundation typology and seismic design code. Detailed sensitivity analyses of the above parameters, reveal their relative importance for the vulnerability analysis and the quantitative risk assessment of low-rise RC buildings subjected to earthquake triggered slow-moving slides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号