首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
多级串联非比例阻尼隔震结构地震响应分析   总被引:2,自引:1,他引:1       下载免费PDF全文
建立了多级串联非比例阻尼隔震结构动力分析模型;引用分区瑞利阻尼模型将非比例阻尼矩阵分解为瑞利阻尼矩阵和体现非比例阻尼的余项阻尼矩阵,推导出结构的阻尼矩阵;并编制了MATLAB动力时程分析程序,对一实际隔震工程进行地震响应分析.结果表明:随着下部结构刚度的增加,结构的层剪力比和隔震层位移响应峰值均趋向于基础隔震结构的对应值;当下部结构为一层,且层间刚度大于上部结构底层层间刚度4~6倍时,可以近似按基础隔震结构进行动力分析.  相似文献   

2.
为提高大型复杂结构体系的计算效率,在深入分析约束模态综合法原理的基础上,论述了非比例阻尼体系中约束模态综合法对阻尼矩阵的处理方法,并探讨了如何缩减对接界面自由度的问题。同时,通过算例详细说明了该方法在高层建筑结构动力时程分析中的应用。计算结果表明,在利用约束模态综合法求解非比例阻尼体系的动力问题时,文中所采用的阻尼矩阵的处理方法是有效的,与有限元直接法相比具有很好的精度。对于地基土-高层建筑结构体系的地震响应分析问题而言,缩减对接界面自由度的约束模态综合法可达到很好的计算精度,能够更大程度的提高计算效率,为大型复杂结构的动力时程分析研究和工程应用提供了一定的依据和方便。  相似文献   

3.
结构动力分析阻尼模型研究   总被引:24,自引:0,他引:24  
提出了结构动力时程分析修正的Rayleigh阻尼模型和一个基于单元特性的阻尼参数方法,可用于合理确定复杂阻尼结构的阻尼参数,工程应用实例表明,阻尼参数的计算对时程响应计算结果的影响是十分明显的,必须在分析结构体系振动特性的基础上慎重确定阻尼参数,以避免为为放大或滤掉主要振型,造成虚假的结论。  相似文献   

4.
针对"房桥合一"高速铁路客站质量、刚度分布严重不均匀、不同阻尼比构件繁多等特点,对其模态特征和用于时程法阻尼模型的确定进行了研究。通过位能加权激励原理和位能公式的阐述、天津西站II区的模态分析与振型分解时程法的应用,并以此为标准进行了5种不同瑞利阻尼比例系数时程法的响应比较。结果表明:位能加权法激励为各模态的振型响应,求得阻尼为振型阻尼,结构模态质量累计数突变发生在第9阶,选择第1,9阶振型确定的瑞利阻尼比例系数较合理。振型分解时程法的振型阻尼可基于振型响应的位能加权法确定,直接时程法的瑞利阻尼宜选择第1阶与模态质量累计数发生突变的振型来确定,可供结构设计与分析参考。  相似文献   

5.
混合结构的阻尼矩阵不满足经典阻尼条件,导致传统的模态叠加法无法适用。复阻尼理论无法适用于时域计算,其自由振动响应中存在发散现象。针对混合结构的阻尼矩阵非比例性和复阻尼理论的时域发散性,基于频域等效原则构建了求解Rayleigh阻尼系数的数学优化模型,进而得到与复阻尼理论等效的Rayleigh阻尼运动方程。算例分析表明:依据位移时程响应和结构等效阻尼比可证明Rayleigh阻尼运动方程的正确性。基于本文研究成果,等效复阻尼理论的混合结构Rayleigh阻尼运动方程可直接采用模态叠加法,结合其确定的结构等效阻尼比,为混合结构的振型分解反应谱法提供理论依据。  相似文献   

6.
为了研究非一致地震输入以及考虑土体介质阻尼的自由波场对大型地铁车站动力响应的影响,发展了一种可考虑土体介质阻尼影响的自由波场一维化时域有限元算法,并编制了相应的非一致地震波动等效荷载的Matlab计算程序;以一典型两层双柱岛式地铁车站为工程背景,建立三维地铁车站结构-土相互作用系统的整体有限元数值模型,开展动力时程实例分析。计算结果表明:与地震波一致输入情形相比,地震波非一致输入将引起地铁车站结构的控制内力和层间位移分布及其幅值发生明显变化;与不考虑土体介质阻尼的地震波动输入相比,在考虑土体介质阻尼的地震波动输入下,地铁车站结构的控制内力和最大层间位移均有一定幅度的减小,且减小幅度随波动入射角的增大而增大。本文分析表明,非一致地震波动输入及土体介质阻尼对大型地铁车站结构的动力时程响应均有一定影响。  相似文献   

7.
本文讨论了利用黏性阻尼和复阻尼模型求解结构动力响应的方法;按相同的阻尼比,分别采用复阻尼模型和黏性阻尼模型计算了两个框架结构在不同地震波作用下的响应,并将结果进行对比,分析了两种不同的阻尼模型对结构动力响应的影响。结果表明,采用不同类型的阻尼对结构响应影响很大。  相似文献   

8.
线性土-结构动力相互作用时域-频域联合解法   总被引:2,自引:0,他引:2       下载免费PDF全文
丁海平  廖振鹏 《地震学报》2001,23(4):413-419
提出一种线性土-结构动力相互作用时域-频域联合解法.首先,用近场波动数值模拟解耦技术求得在短时脉冲作用下采用Rayleigh阻尼系统的时域解;再对时域解进行富立叶变换得到相应频域解;然后根据阻尼与系统动力反应结果的关系,利用泰勒级数展开技术得到具有复阻尼系统的频域解.这一方法充分利用了时域解耦显式算法的优点,提高了线性土 结构动力相互作用分析的计算效率.   相似文献   

9.
结构-地基体系的非比例阻尼影响及随机地震响应分析   总被引:1,自引:0,他引:1  
针对结构-地基体系随机地震响应分析中存在的非比例阻尼耦合问题,采用不同非比例阻尼判断准则研究了结构-地基体系在不同刚度比,不同阻尼比下结构与地基间的阻尼耦合及体系不同振型间的阻尼耦合问题,推导了用于结构-地基非比例阻尼系统随机分析的小参数随机摄动分析公式,并用于地下大型有衬砌洞室的随机地震响应分析中。  相似文献   

10.
不同阻尼体系地震能量输入及阻尼能量耗散计算分析   总被引:1,自引:0,他引:1  
本文给出了复阻尼体系地震能量输入及阻尼能量耗散计算公式。利用天津、E1Centro、迁安记录及Mexico地震Cale记录计算了复阻尼及粘性阻尼体系的地震能量输入及阻尼能量耗散,并绘制了相应的时程曲线。计算所用阻尼比取0.1及0.05,周期分别取0.3s,0.5s,1s,1.5s及5s。通过计算我们观察到,除迁安记录外,在其它几个地震作用下,对固有周期小于1s的短周期结构,复阻尼体系能量输入及阻尼能量耗散时程曲线值高于相应的粘性阻尼体系(对迁安记录固有周期需小于0.5s)。对中周期结构,两组曲线相近,对于长周期结构,复阻尼体系的能量时程曲线值低于相应的粘性阻尼体系值。对于每个地震记录,有一个临界值,体系的固有周期小于此值时,不同阻尼模型的能量输入、阻尼能量耗散时程曲线值无大差异,当周期大于此值时,不同阻尼模型的能量输入及阻尼能量耗散时程曲线差异较大。复阻尼体系对周期的敏感程度远大于粘性阻尼体系。当周期不变,阻尼比增大时,在峰值点之后,复阻尼体系能量时程曲线基本无大的变化,粘性阻尼体系能量时程曲线有抬高趋势。  相似文献   

11.
Diagonal damping matrices were computed for three systems which have non-proportional damping matrices. These diagonal damping matrices were computed on three bases, as follows: 1. After normalizing the equations of motion by the modal matrix, the diagonal terms are retained ignoring the non-diagonal terms. 2. Diagonal damping matrix is established by the optimization algorithm which minimizes the mean square error of the frequency response. 3. Diagonal damping is determined from the normalized differential equation by matching the peaks of the coupled and uncoupled system. The frequency responses for the three cases of one of the three systems are presented together with a comparison of the energy dissipation.  相似文献   

12.
高阶单步实时动力子结构试验技术研究   总被引:10,自引:1,他引:9  
结构联机试验可分为两类:拟静力及拟动力试验技术,它们都需要建立一套显式的逐步积分算法。国内外学者在这方面已经进行了许多的研究,取得了很好的成果。随着振动控制技术在结构工程上的应用,一些速度相关型的装置开始用于被控系统,它给原有的实时子结构试验带来了新问题。如何建立更好的高精度、无条件稳定的实时动力子结构试验算法日趋重要。本文在前人早期高阶单步逐步积分算法研究成果的基础上,提出了一种新的高阶单步实时动力子结构试验算法。数值模拟分析表明,新算法不仅是显式的,而且具有高精度、无算法阻尼、无超越现象等算法特点,均比目前所见到的已有算法优越。如果能实现实时子结构试验,就能同时控制位移和速度,则应用本文算法必将取得更好的试验结果。  相似文献   

13.
In order to account for the non‐linear behavior of structures via non‐linear static procedure, the capacity spectrum method has been adopted by ATC‐40 for evaluation and retrofit of reinforced concrete buildings. For elastic‐perfectly‐plastic SDOF systems, the accuracy of the capacity spectrum method depends only on the acceleration response spectrum chosen to form the demand spectrum and the adopted model for calculating the equivalent viscous damping ratios. According to this method, the pseudo‐acceleration response spectrum (PSa) is used to create the demand diagram. It is found that the ATC‐40 procedure, using its Type A hysteretic model, may be inaccurate especially for systems with damping ratios greater than 10% and periods longer than 0.15sec. In order to improve the accuracy of the capacity spectrum method, this study proposes to use the real absolute acceleration response spectrum (S0.a) instead of the PSa to establish the demand diagram. The step‐by‐step procedure of the improved method and examples are implemented in this paper to illustrate the calculations of earthquake‐induced deformations. In addition, three selected models of equivalent viscous damping are also compared in this paper to assess the accuracy of the model used in the ATC‐40 procedure. Results show that the WJE damping model may be used by the capacity spectrum method to reasonably predict the inelastic displacements when the ductility demand (μ) of the structures is less than 4, whereas the damping model proposed by Kowalsky can be implemented when μ>4.0. Alternatively, the damping model proposed by Kowalsky may be used to calculate the equivalent viscous damping for the entire range of ductility. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The causal and physically realizable Biot hysteretic model proves to be the simplest linear model able to describe the nearly rate‐independent behaviour of engineering materials. In this paper, the performance of the Biot hysteretic model is analysed and compared with those of the ideal and causal hysteretic models. The Laguerre polynomial approximation (LPA) method, recently proposed for the time‐domain analysis of linear viscoelastic systems, is then summarized and applied to the prediction of the dynamic response of linear hysteretic systems to deterministic and random excitations. The parameters of the LPA model generally need to be computed through numerical integrals; however, when this model is used to approximate the Biot hysteretic model, closed‐form expressions can be found. Effective step‐by‐step procedures are also provided in the paper, which prove to be accurate also for high levels of damping. Finally, the method is applied to the dynamic analysis of a highway embankment excited by deterministic and random ground motions. The results show that in some cases the inaccuracy associated with the use of an equivalent viscous damping model is too large. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Seismic structural control using semi-active tuned mass dampers   总被引:8,自引:1,他引:8  
This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping. An off-and-towards-equilibrium (OTE) algorithm is employed to examine the control performance of the structure/SATMD system by considering the damping as an assumptive control action. The damping modification of the SATMD is carried out according to the proposed OTE algorithm, which is formulated based on analysis of the structural movement under external excitations, and the measured responses of the structure at every time instant. As examples two numerical simulations of a five-storey and a ten-storey shear structures with a SATMD on the roof are conducted. The effectiveness on vibration reduction of MDOF systems subjected to seismic excitations is discussed. Analysis results show that the behavior of the structure with a SATMD is significantly improved and the feasibility of applying the OTE algorithm to the structural control design of SATMD is also verified.  相似文献   

16.
An accurate algorithm for the integration of the equations of motion arising in structural dynamics is presented. The algorithm is an unconditionally stable single-step implicit algorithm incorporating algorithmic damping. The displacement for a Single-Degree-of-Freedom system is approximated within a time step by a function which is cubic in time. The four coefficients of the cubic are chosen to satisfy the two initial conditions and two weighted integral equations. By considering general weight functions, eight additional coefficients arise. These coefficients are selected to (i) minimize the difference between exact and approximate solutions for small time steps, (ii) incorporate specified algorithmic damping for large time steps, (iii) ensure unconditional stability and (iv) minimize numerical operations in forming the amplification matrix. The accuracy of the procedure is discussed, and the solution time is compared with a widely used algorithm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
The dynamic analysis of complex non-linear structural systems by the finite element approach requires the use of time-step algorithms for solving the equations of motion in the time domain. Both an implicit and an explicit version of such a time-step algorithm, called the ρ-method, the parameter ρ being used for controlling numerical damping in the higher modes, are presented in this paper. For the implicit family of algorithms unconditional stability, consistency, convergence, accuracy and overshoot properties are first discussed and proved. On the basis of the algorithmic damping ratio (dissipation) and period elongation (dispersion) the ρ-method is then compared with the well-known implicit algorithms of Hilber, Newmark, Wilson, Park and Houbolt. An explicit version of the algorithm is also derived and briefly discussed. This shows numerical properties similar to the central difference method. Both versions of the algorithm have been implemented in a general purpose computer program which has been often used for both numerical tests and practical applications.  相似文献   

18.
In this paper we extend the Lanczos algorithm for the dynamic analysis of structures7 to systems with general matrix coefficients. The equations of dynamic equilibrium are first transformed to a system of first order differential equations. Then the unsymmetric Lanczos method is used to generate two sets of vectors. These vectors are used in a method of weighted residuals to reduce the equations of motion to a small unsymmetric tridiagonal system. The algorithm is further simplified for systems of equations with symmetric matrices. By appropriate choice of the starting vectors we obtain an implementation of the Lanczos method that is remarkably close to that in Reference 7, but generalized to the case with indefinite matrix coefficients. This simplification eliminates one of the sets of vectors generated by the unsymmetric Lanczos method and results in a symmetric tridiagonal, but indefinite, system. We identify the difficulties that may arise when this implementation is applied to problems with symmetric indefinite matrices such as vibration of structures with velocity feedback control forces which lead to symmetric damping matrices. This approach is used to evaluate the vibration response of a damped beam problem and a space mast structure with symmetric damping matrix arising from velocity feedback control forces. In both problems, accurate solutions were obtained with as few as 20 Lanczos vectors.  相似文献   

19.
A damage detection algorithm of structural health monitoring systems for base‐isolated buildings is proposed. The algorithm consists of the multiple‐input multiple‐output subspace identification method and the complex modal analysis. The algorithm is applicable to linear and non‐linear systems. The story stiffness and damping as damage indices of a shear structure are identified by the algorithm. The algorithm is further tuned for base‐isolated buildings considering their unique dynamic characteristics by simplifying the systems to single‐degree‐of‐freedom systems. The isolation layer and the superstructure of a base‐isolated building are treated as separate substructures as they are distinctly different in their dynamic properties. The effectiveness of the algorithm is evaluated through the numerical analysis and experiment. Finally, the algorithm is applied to the existing 7‐story base‐isolated building that is equipped with an Internet‐based monitoring system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The distinct element method (DEM) has been used successfully for the dynamic analysis of rigid block systems. One of many difficulties associated with DEM is modeling of damping. In this paper, new procedures are proposed for the damping modeling and its numerical implementation in distinct element analysis of rigid multi-block systems. The stiffness proportional damping is constructed for the prescribed damping ratio, based on the non-zero fundamental frequency effective during the time interval while the boundary conditions remain essentially constant. At this time interval, the fundamental frequency can be estimated without complete eigenvalue analysis. The damping coefficients will vary while the damping ratio remains the same throughout the entire analysis. A new numerical procedure is developed to prevent unnecessary energy loss that can occur during the separation phases. These procedures were implemented in the development of the distinct element method for the dynamic analyses of piled multi-block systems. The analysis results for the single-block and two-block systems were in a good agreement with the analytic predictions. Applications to the seismic analyses of piled fourblock systems revealed that the new procedures can make a significant difference and may lead to much-improved results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号