首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
混合结构的阻尼矩阵不满足经典阻尼条件,导致传统的模态叠加法无法适用。复阻尼理论无法适用于时域计算,其自由振动响应中存在发散现象。针对混合结构的阻尼矩阵非比例性和复阻尼理论的时域发散性,基于频域等效原则构建了求解Rayleigh阻尼系数的数学优化模型,进而得到与复阻尼理论等效的Rayleigh阻尼运动方程。算例分析表明:依据位移时程响应和结构等效阻尼比可证明Rayleigh阻尼运动方程的正确性。基于本文研究成果,等效复阻尼理论的混合结构Rayleigh阻尼运动方程可直接采用模态叠加法,结合其确定的结构等效阻尼比,为混合结构的振型分解反应谱法提供理论依据。  相似文献   

2.
对于组合结构,提出了一种新的基于单元瑞利阻尼模型的应变能振型阻尼比,并证明了其在特定整体阻尼矩阵下与强迫解耦法的等价性;推导了具有明确理论依据的综合阻尼比计算公式,并基于相应的应变能振型阻尼比得出了结构的刚度综合阻尼比和瑞利综合阻尼比。分别采用复振型分解法和振型分解法对算例结构进行了地震荷载作用下的弹性时程分析,结果表明,瑞利综合阻尼比对于以剪切变形为主的多层组合结构具有良好的计算精度和适用性。  相似文献   

3.
本文基于带集中参数边界条件的分布参数连续梁理论,推导规则隔震梁桥单墩-质点(SCM)地震时程响应的计算步骤.在控制方程边界条件引入等效基础弹簧和墩顶隔震层变形协调条件,解析地获得各阶实模态,用牛顿法搜索各阶频率.为了处理隔震层非比例阻尼产生的耦联效应,由能量法分配各阶实振型的隔震层附加阻尼比,实现体系的实模态近似解耦,应用振型叠加法求解体系的地震时程响应.最后应用该方法对一规则隔震梁桥SCM体系的地震响应进行分析,与有限元时程积分的结果进行比较,表明此方法的有效性.计算结果表明,采用墩顶隔震策略的单墩-质点体系能显著减小结构响应,具有良好的减震效果.  相似文献   

4.
用应变模态技术诊断梁结构的损伤   总被引:12,自引:0,他引:12  
重点研究损伤对应变模态影响规律及其灵敏程度.根据计算结果,损伤处附近发生突变,损伤30%时突变区为梁长的12.5%.应变模态对非节点损伤非常敏感,应变模态也有明显改变,尤其是跨中损伤第1阶、四分之一跨损伤第3和第2阶.跨中损伤时,1阶应变模态除突变区外大多数应变几乎呈均匀下降趋势.四分之一跨损伤30%时,3阶应变模态第1峰值区及2阶模态第1、第2峰值区应变振型值下降至58.6%、71.9%及84.2%.所以,可利用应变模态的敏感性确定损伤位置和程度.  相似文献   

5.
多级串联非比例阻尼隔震结构地震响应分析   总被引:2,自引:1,他引:1       下载免费PDF全文
建立了多级串联非比例阻尼隔震结构动力分析模型;引用分区瑞利阻尼模型将非比例阻尼矩阵分解为瑞利阻尼矩阵和体现非比例阻尼的余项阻尼矩阵,推导出结构的阻尼矩阵;并编制了MATLAB动力时程分析程序,对一实际隔震工程进行地震响应分析.结果表明:随着下部结构刚度的增加,结构的层剪力比和隔震层位移响应峰值均趋向于基础隔震结构的对应值;当下部结构为一层,且层间刚度大于上部结构底层层间刚度4~6倍时,可以近似按基础隔震结构进行动力分析.  相似文献   

6.
在结构动力时程分析中常采用瑞利阻尼,阻尼比ξ表示为: (1) ξ=1/2(αω+βω)式中,α和β称为瑞利阻尼系数,ω=2 πf,为圆频率. 赵丽在同济大学硕士学位论文《地震动摇摆分量对框架结构作用的数值分析》中发现,阻尼系数的取值对结构角柱最大位移的影响很大,甚至会导致位移响应曲线出现振荡不收敛的情形,因此合理选取瑞利阻尼系数对结构地震响应计算十分重要.  相似文献   

7.
为全面掌握核电超大型冷却塔的抗震性能,首先进行结构的模态分析,然后采用振型分解反应谱法和弹性时程分析方法,计算结构在多遇地震作用下的响应,并对结构进行考虑材料和几何非线性的动力弹塑性时程分析,得到结构在罕遇地震作用下的响应。由于超大塔支柱跨度达到170m,还首次对结构进行了考虑行波效应的多点激励分析。结果表明:结构前8阶振型以局部振动为主,直到第9阶出现整体倾覆振型。在多遇地震作用下,支柱的最大位移和基底剪力均满足规范要求,且水平地震反应远大于竖向地震反应。在罕遇地震作用下,支撑结构位移角远小于规范限值,出现的塑性铰数量较少,且主要分布在支柱与壳体的连接处。多点输入对支柱内力影响较为不利,而对支柱位移和塔筒内力影响较小,塑性铰出现的数量稍多且破坏程度更加严重。  相似文献   

8.
依据对偶原则,频率相关黏性阻尼是复阻尼在实数域中的表达形式,可作为一种等效复阻尼,且具有稳定性和每一循环消耗能量与激励频率无关的优点。将地震波的卓越频率作为激励频率,结合短时傅里叶变换,提出了单一材料结构频率相关黏性阻尼的模态叠加法;对于不同材料阻尼特性混合结构的频率相关黏性阻尼,利用最小二乘法拟合Caughey阻尼矩阵,以近似模拟频率相关黏性阻尼矩阵,提出了Caughey阻尼理论模态叠加法,成果实现了单一材料和混合材料结构等效复阻尼运动方程的模态叠加法,为基于复阻尼理论的结构振型分解反应谱法提供理论依据。  相似文献   

9.
在TMD系统的质量、阻尼和总刚度均保持不变的情况下,拟定3种不同的TMD系统设置方案,并从地震荷载激励方面来研究调频质量阻尼器对超高层结构的振动控制。通过对3种方案的结构模型进行模态分析和动力时程反应分析,得出在地震荷载激励下控制前后的结构响应,并比较了3种方案下TMD的控制差异,选择出最优方案。此外从能量的角度出发,分析了TMD耗散地震能的能力,并确定出在减少地震输入能及增大阻尼耗能作为控制目标时的最优方案。  相似文献   

10.
对地震作用下结构反应的复模态分解反应谱法进行了研究,指出在复模态分解反应谱法中,具有实特征值的模态不必组成二阶振动系统,可按一阶线性系统参与模态组合,且一阶线性系统只需要一条反应谱。给出了相应的复模态完全平方组合(CCQC)系数计算公式,该公式包括了一阶系统响应的相关函数和一阶系统响应与二阶系统响应之间的相关函数。通过算例验证了方法的可行性。  相似文献   

11.
The effects of Rayleigh damping model on the engineering demand parameters of two steel moment‐resisting frame buildings were evaluated. Two‐dimensional models of the buildings were created and response history analysis were conducted for three different hazard levels. The response history analysis results indicate that mass‐proportional damping leads to high damping forces compared with restoring forces and may lead to overestimation of floor acceleration demands for both buildings. Stiffness‐proportional damping, on the other hand, is observed to suppress the higher‐mode effects in the nine‐story building resulting in lower story drift demands in the upper floors compared with other damping models. Rayleigh damping models, which combine mass‐proportional and stiffness‐proportional components, that are anchored at reduced modal frequencies lead to reasonable damping forces and floor acceleration demands for both buildings and does not suppress higher‐mode effects in the nine‐story building. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an efficient procedure to determine the natural frequencies, modal damping ratios and mode shapes for torsionally coupled shear buildings using earthquake response records. It is shown that the responses recorded at the top and first floor levels are sufficient to identify the dominant modal properties of a multistoried torsionally coupled shear building with uniform mass and constant eccentricity even when the input excitation is not known. The procedure applies eigenrealization algorithm to generate the state‐space model of the structure using the cross‐correlations among the measured responses. The dynamic characteristics of the structure are determined from the state‐space realization matrices. Since the mode shapes are obtained only at the instrumented floor (top and first floors) levels, a new mode shape interpolation technique has been proposed to estimate the mode shape coefficients at the remaining floor levels. The application of the procedure has been demonstrated through a numerical experiment on an eight‐storied torsionally coupled shear building subjected to earthquake base excitation. The results show that the proposed parameter identification technique is capable of identifying dominant modal parameters and responses even with significant noise contamination of the response records. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
It has been shown that the use of base isolation not only attenuates the response of a primary structural system but also reduces the response of a secondary system mounted on or within the main structure. The isolation system, superstructure and equipment may be made of different materials with significantly different energy dissipation characteristics such that the damping matrix for the combined system is non-classical and can only be approximately expressed by modal damping ratios if the classical mode method is used for analysis. The object of this paper is to evaluate the accuracy of this procedure in approximating the responses of base-isolated structures and internal equipment. The complex mode method can provide exact solutions to problems with non-classical damping and is used here to find the exact response of the isolation-superstructure-equipment system. The entire system is assumed to be linear elastic with viscous damping and the superstructure is assumed to be proportionally damped so that the deformation of the superstructure can be expressed in terms of its classical modes. Recognizing that the ratio of the equipment mass to the structural mass and the ratio of the stiffness of the isolation system to the superstructural stiffness are both small, perturbation methods are used to find the response. This study shows that the response of base-isolated structures can be determined by the classical mode method to some degree of accuracy, but the higher frequency content is distorted. The equipment response derived by the classical mode method is much smaller than the exact solution so that the complex mode method should be applied to find equipment response.  相似文献   

14.
A response spectrum method for stationary random vibration analysis of linear, multi-degree-of-freedom systems is developed. The method is based on the assumption that the input excitation is a wide-band, stationary Gaussian process and the response is stationary. However, it can also be used as a good approximation for the response to a transient stationary Gaussian input with a duration several times longer than the fundamental period of the system. Various response quantities, including the mean-squares of the response and its time derivative, the response mean frequency, and the cumulative distribution and the mean and variance of the peak response are obtained in terms of the ordinates of the mean response spectrum of the input excitation and the modal properties of the system. The formulation includes the cross-correlation between modal responses, which is shown to be significant for modes with closely spaced natural frequencies. The proposed procedure is demonstrated for an example structure that is subjected to an ensemble of earthquake-induced base excitations. Computed results based on the response spectrum method are in close agreement with simulation results obtained from time-history dynamic analysis. The significance of closely spaced modes and the error associated with a conventional method that neglects the modal correlations are also demonstrated.  相似文献   

15.
This paper presents an active control algorithm using the probability density function of structural energy. It is assumed that structural energy under excitation has a Rayleigh probability distribution. This assumption is based on the fact that the Rayleigh distribution satisfies the condition that the structural energy is always positive and the occurrence probability of minimum energy is zero. The magnitude of the control force is determined by the probability that the structural energy exceeds the specified target critical energy, and the sign of the control force is determined by the Lyapunov controller design method. The proposed control algorithm shows much reduction of peak responses under seismic excitation compared with the LQR controller, and it can consider the control force limit in the controller design. Also, the chattering problem which sometimes occurs in the Lyapunov controller can be avoided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The complete Square‐Root‐of‐Sum‐of‐Squares (c‐SRSS) modal combination rule is presented. It expresses the structural response in terms of uncoupled SDOF modal responses, yet accounting fully for modal response variances and cross‐covariances. Thus, it is an improvement over the classical SRSS rule which neglects contributions from modal cross‐covariances. In the c‐SRSS rule the spectral moments of the structural response are expressed rigorously in terms of the spectral moments of uncoupled modal responses and of some coefficients that can be computed straightforwardly as a function of modal frequencies and damping, without involving the computation of cross‐correlation coefficients between modal responses. An example shows an application of the c‐SRSS rule for structural systems with well separated and closely spaced modal frequencies, subjected to wide‐band and narrow‐band excitations. Comparisons with response calculations using the SRSS and the Complete Quadratic Combination rules are given and discussed in detail. Based on the c‐SRSS rule a response spectrum formulation is introduced to estimate the maximum structural response. An example considering a narrow‐band excitation from the great Mexico earthquake of September 19, 1985, is given and the accuracy of the response spectrum formulation is examined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Based on the Hilbert–Huang spectral analysis, a method is proposed to identify multi‐degree‐of‐freedom (MDOF) linear systems using measured free vibration time histories. For MDOF systems, the normal modes have been assumed to exist. In this method, the measured response data, which are polluted by noises, are first decomposed into modal responses using the empirical mode decomposition (EMD) approach with intermittency criteria. Then, the Hilbert transform is applied to each modal response to obtain the instantaneous amplitude and phase angle time histories. A linear least‐square fit procedure is proposed to identify the natural frequency and damping ratio from the instantaneous amplitude and phase angle for each modal response. Based on a single measurement of the free vibration time history at one appropriate location, natural frequencies and damping ratios can be identified. When the responses at all degrees of freedom are measured, the mode shapes and the physical mass, damping and stiffness matrices of the structure can be determined. The applications of the proposed method are illustrated using three linear systems with different dynamic characteristics. Numerical simulation results demonstrate that the proposed system identification method yields quite accurate results, and it offers a new and effective tool for the system identification of linear structures in which normal modes exist. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
In the inelastic time history analyses of structures in seismic motion, part of the seismic energy that is imparted to the structure is absorbed by the inelastic structural model, and Rayleigh damping is commonly used in practice as an additional energy dissipation source. It has been acknowledged that Rayleigh damping models lack physical consistency and that, in turn, it must be carefully used to avoid encountering unintended consequences as the appearance of artificial damping. There are concerns raised by the mass proportional part of Rayleigh damping, but they are not considered in this paper. As far as the stiffness proportional part of Rayleigh damping is concerned, either the initial structural stiffness or the updated tangent stiffness can be used. The objective of this paper is to provide a comprehensive comparison of these two types of Rayleigh damping models so that a practitioner (i) can objectively choose the type of Rayleigh damping model that best fits her/his needs and (ii) is provided with useful analytical tools to design Rayleigh damping model with good control on the damping ratios throughout inelastic analysis. To that end, a review of the literature dedicated to Rayleigh damping within these last two decades is first presented; then, practical tools to control the modal damping ratios throughout the time history analysis are developed; a simple example is finally used to illustrate the differences resulting from the use of either initial or tangent stiffness‐based Rayleigh damping model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号