首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
In atmospheric models, the roughness length for momentum, heat and moisture are often taken equal, and tuned to the momentum budget problem. In this paper, it is shown that the roughness lengths have considerable impact on the evaporation in winter. One-column simulations of the land-surface scheme are driven with a long time series of observations for Cabauw in The Netherlands. It is shown that with the operational roughness lengths for this location (as in use at ECMWF in May 1993), evaporation in January, February and March is overestimated by more than a factor 2. More realistic parameters, as documented for this site, virtually eliminate the error. This study shows the importance of the surface roughness lengths in determining evaporation from wet surfaces. It also illustrates the strength of long observational time series in identifying model deficiencies.  相似文献   

2.
3.
A soil-atmosphere-transfer model (SATM) was evaluated using observational data from the Tongyu Cropland Station and Audubon Research Ranch in semiarid areas, where the land cover was nearly bare soil during the simulation period. Simulations by the SATM at both sites were conducted using the new and original surface thermal roughness length parameterization schemes, respectively. Comparisons of simulations and observations have demonstrated that using the new surface thermal roughness length scheme in this model made sound improvements in the simulation of soil surface temperatures, sensible heat fluxes and net radiation fluxes in the daytime at both sites, compared to the original scheme, because the new scheme produced a larger aerodynamic resistance for turbulent heat transfer in the daytime. With respect to latent heat fluxes, the improvement was not as obvious as that attained for soil surface temperature since the soil water content in the surface layer in a semiarid area is a more important factor than surface soil temperature in controlling evaporation rate. Accordingly, it can be concluded that the new surface thermal roughness length parameterization scheme could improve the ability of the SATM to simulate bare soil surface energy budget with latent heat flux component being innegligible in semiarid areas.  相似文献   

4.
Improving and validating land surface models based on integrated observations in deserts is one of the challenges in land modeling. Particularly, key parameters and parameterization schemes in desert regions need to be evaluated in-situ to improve the models. In this study, we calibrated the land-surface key parameters and evaluated several formulations or schemes for thermal roughness length (z 0h ) in the common land model (CoLM). Our parameter calibration and scheme evaluation were based on the observed data during a torrid summer (29 July to 11 September 2009) over the Taklimakan Desert hinterland. First, the importance of the key parameters in the experiment was evaluated based on their physics principles and the significance of these key parameters were further validated using sensitivity test. Second, difference schemes (or physics-based formulas) of z 0h were adopted to simulate the variations of energy-related variables (e.g., sensible heat flux and surface skin temperature) and the simulated variations were then compared with the observed data. Third, the z 0h scheme that performed best (i.e., Y07) was then selected to replace the defaulted one (i.e., Z98); the revised scheme and the superiority of Y07 over Z98 was further demonstrated by comparing the simulated results with the observed data. Admittedly, the revised model did a relatively poor job of simulating the diurnal variations of surface soil heat flux, and nighttime soil temperature was also underestimated, calling for further improvement of the model for desert regions.  相似文献   

5.
An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.  相似文献   

6.
An upgraded version of the Eta model   总被引:2,自引:0,他引:2  
Upgrades implemented over a number of years in an open source version of the Eta model, posted at the CPTEC web site http://etamodel.cptec.inpe.br/, are summarized and examples of benefits are shown. The version originates from the NCEP’s Workstation Eta code posted on the NCEP web site http://www.emc.ncep.noaa.gov/mmb/wrkstn_eta, which differs from the NCEP’s latest operational Eta by having the WRF-NMM nonhydrostatic option included. Most of the upgrades made resulted from attention paid to less than satisfactory performance noted in several Eta results, and identification of the reasons for the problem. Others came from simple expectation that including a feature that is physically justified but is missing in the code should help. The most notable of the upgrades are the introduction of the so-called sloping steps, or discretized shaved cells topography; piecewise-linear finite-volume vertical advection of dynamic variables; vapor and hydrometeor loading in the hydrostatic equation, and changes aimed at refining the convection schemes available in the Eta. Several other modifications have to do with the calculation of exchange coefficients, conservation in the vertical diffusion, and diagnostic calculation of 10-m winds. Several examples showing improved performance resulting from the dynamics changes are given. One includes a case of unrealistically low temperatures in several mountain basins generated by a centered vertical advection difference scheme’s unphysical advection from below ground, removed by its replacement with a finite-volume scheme. Another is that of increased katabatic winds in the Terra Nova Bay Antarctica region. Successful forecast of the severe downslope zonda wind case in the lee of the highest peaks of the Andes is also shown, and some of the recent successful verification results of the use of the upgraded model are pointed out. The code is used at numerous places, and along with setup information it is available for outside users at the CPTEC Eta web site given above.  相似文献   

7.
8.
With very few exceptions, just about all limited area models (LAMs) used in operational NWP and regional climate modeling use the Davies (Q J R Meteorol Soc 102:405–418, 1976) relaxation lateral boundary conditions (LBCs), even though they make no effort to respect the basic mathematics of the problem. While in the early stages of the primitive equation LAM development in the seventies numerous schemes have been proposed and tested, LAM communities have eventually for the most part settled on the relaxation LBCs with few questions asked. An exception is the Eta model used extensively at NCEP and several other centers, in which the Mesinger (Contrib Atmos Phys 50:200–210, 1977) LBCs are used, designed and based on knowledge available before the introduction of the relaxation scheme. They prescribe variables along the outermost row of grid points only; all of them at the inflow points and one less at the outflow points where the tangential velocity components are extrapolated from inside of the model domain. Additional schemes are in place to suppress separation of gravity-wave solutions on C-subgrids of the model’s E-grid. A recent paper of Veljovic et al. (Meteor Zeitschrift 19:237–246, 2010) included three 32-day forecasts done with both the Eta and the relaxation LBCs and the comparison of some of their verification results. Here we extend this experiment by three additional forecasts to arrive at an ensemble of six members run with both schemes, and present a more complete discussion of results. We in addition show results of one of these forecasts in which the linear change of relaxation coefficients was replaced by the change following the recommendation of Lehmann (Meteorol Atmos Phys 52:1–14, 1993). We feel that the results of our two verification schemes strongly suggest the advantage of the Eta over the conventional relaxation scheme, thereby raising doubts as to the justification for its use.  相似文献   

9.
A novel approach for upscaling land-surface parameters based on inverse stochastic surface-vegetation-atmosphere transfer (SVAT) modelling is presented. It allows estimation of effective parameters that yield scale invariant outputs e.g. for sensible and latent heat fluxes and evaporative fraction. The general methodology is used to estimate effective parameters for the Oregon State University Land-Surface Model, including surface albedo, surface emissivity, roughness length, minimum stomatal resistance, leaf area index, vapour pressure deficit factor, solar insolation factor and the Clapp–Hornberger soil parameter. Upscaling laws were developed that map the mean and standard deviation of the distributed land-surface parameters at the subgrid scale to their corresponding effective parameter at the grid scale. Both linear and bi-parabolic upscaling laws were obtained for the roughness length. The bi-parabolic upscaling law fitted best for the remaining land-surface parameters, except surface albedo and emissivity, which were best fitted with linear upscaling laws.  相似文献   

10.
11.
利用那曲高寒气候环境观测研究站本部BJ观测点2014年6-8月的近地层观测资料,结合CLM4.5陆面模型,探究空气动力学粗糙长度、叶面积指数、植被覆盖度和热力学粗糙长度参数化方案的改变对陆面能水平衡的模拟结果产生的影响,并且探讨了粗糙度及植被状态指数影响陆面能水平衡模拟性能的机制.结果表明:(1)CLM4.5默认的热力...  相似文献   

12.
两次暴雨过程模拟对陆面参数化方案的敏感性研究   总被引:1,自引:0,他引:1  
陈海山  倪悦  苏源 《气象学报》2014,72(1):79-99
选取发生在江西和福建境内的两次暴雨个例,利用NCEP再分析资料在对暴雨发生前、后的环境场和物理量场进行诊断和对比分析的基础上,采用中尺度模式WRF V3.3,通过数值模拟探讨了陆面过程对两次暴雨过程的可能影响及其相关的物理过程。结果表明,2012年5月12日江西大暴雨主要受大尺度环流和中尺度天气系统影响,具有范围大、持续时间长等特点,属于大尺度降水为主的暴雨;而2011年8月23日福建暴雨发生在副热带高压控制下的午后,局地下垫面强烈的感热和潜热通量使低层大气不稳定性增强,触发了此次对流性降水为主的暴雨。通过资料诊断分析,可以判断陆面过程对福建暴雨个例的影响程度明显强于江西暴雨个例。通过关闭地表通量试验发现,陆面过程对暴雨模拟十分重要,尤其是对于该个例中对流性降水的发生起到关键性的作用。通过陆面参数化方案的敏感性试验发现,两次暴雨过程对陆面参数化方案均较为敏感。江西暴雨对陆面过程的敏感性主要体现在对流降水的模拟上,而福建暴雨则体现在大尺度降水的模拟方面,即福建暴雨对陆面参数化方案的敏感性强于江西暴雨。敏感性产生机制与降水类型关系紧密,大尺度降水对陆面过程的敏感性主要来源于不同参数化模拟的中高空对流系统的差异,而对流降水的敏感性则与不同参数化模拟的地表通量的差异有关。通过陆面参数的扰动试验进一步发现,相比于地表粗糙度和最小叶孔阻抗,土壤孔隙度和地表反照率则是影响对流降水对陆面过程敏感的关键因子,这在本质上与地表通量是否受到扰动有关。地表通量较风场而言,受扰动引起变化的空间范围广、时间响应快,变化具有明显规律性。所得结果可为深入理解陆面过程影响暴雨等天气过程和改进数值模式对暴雨的模拟能力提供一定的参考。  相似文献   

13.
Summary  A mesoscale numerical model, incorporating a land-surface scheme based on Deardorffs’ approach, is used to study the diurnal variation of the boundary layer structure and surface fluxes during four consecutive days with air temperatures well below zero, snow covered ground and changing synoptic forcing. Model results are evaluated against in-situ measurements performed during the WINTEX field campaign held in Sodankyl?, Northern Finland in March 1997. The results show that the land-surface parameterization employed in the mesoscale model is not able to reproduce the magnitude of the daytime sensible heat fluxes and especially the pronounced maximum observed in the afternoon. Additional model simulations indicate that this drawback is to a large extent removed by the implementation of a shading factor in the original Deardorff scheme. The shading factor, as discussed in Gryning et al. (2001), accounts for the fact that in areas with sparse vegetation and low solar angles, both typical for the northern boreal forests in wintertime, absorption of direct solar radiation is due to an apparent vegetation cover which is much greater than the actual one (defined as the portion of the ground covered by vegetation projected vertically). Moreover, the observed asymmetry in the diurnal variation of the sensible heat flux indicates that there might be a significant heat storage in the vegetation. The implementation of an objective heat storage scheme in the mesoscale model explains part of the observed diurnal variation of the sensible heat flux. Received November 12, 1999 Revised October 4, 2000  相似文献   

14.
At present a variety of boundary-layer schemes is in use in numerical models and often a large variation of model results is found. This is clear from model intercomparisons, such as organized within the GEWEX Atmospheric Boundary Layer Study (GABLS). In this paper we analyze how the specification of the land-surface temperature affects the results of a boundary-layer scheme, in particular for stable conditions. As such we use a well established column model of the boundary layer and we vary relevant parameters in the turbulence scheme for stable conditions. By doing so, we can reproduce the outcome for a variety of boundary-layer models. This is illustrated with the original set-up of the second GABLS intercomparison study using prescribed geostrophic winds and land-surface temperatures as inspired by (but not identical to) observations of CASES-99 for a period of more than two diurnal cycles. The model runs are repeated using a surface temperature that is calculated with a simple land-surface scheme. In the latter case, it is found that the range of model results in stable conditions is reduced for the sensible heat fluxes, and the profiles of potential temperature and wind speed. However, in the latter case the modelled surface temperatures are rather different than with the original set-up, which also impacts on near-surface air temperature and wind speed. As such it appears that the model results in stable conditions are strongly influenced by non-linear feedbacks in which the magnitude of the geostrophic wind speed and the related land-surface temperature play an important role.  相似文献   

15.
This paper presents a case study of the impact of land surface treatment on warm season precipitation simulations at convection-permitting grid resolution. Two surface schemes are tested: Dudhia’s five-layer soil model (FLSM) and the Noah land-surface model (NLSM). The experimentation case involves a 1-week episode of active summertime convection over the central United States. The overall precipitation features, such as the diurnal regeneration of zonally propagating rainfall episodes and the spatial distribution of accumulative rainfall, are adequately replicated by the two parameterizations. In comparison, NLSM produces roughly 12% more and broader rainfall than FLSM. This differential rainfall amount is consistent with the differential surface moisture fluxes between the two schemes, whereas the precipitation feedback plays a negligible role. It is also found that FLSM generates comparatively stronger sensible heat transports from the land surface and thus a warmer temperature near the surface.  相似文献   

16.
利用NCEP每6 h一次的1°×1°格点资料和中尺度模式WRF(V3.2),选用不同的陆面参数化方案,对2010年8月7—8日发生在甘肃舟曲的一次西北地区特大暴雨天气过程进行数值模拟试验。结果表明,此次暴雨过程数值模拟的准确率对陆面参数化方案的选择比较敏感。在WRF模式中,耦合陆面方案比不耦合陆面方案对暴雨的模拟效果更好,耦合陆面方案所模拟的降水分布、地表通量以及地面气象要素都与实况更加接近。耦合不同的陆面方案模拟的降水以及感热通量、潜热通量都存在较大的差别,但是采用不同的陆面方案模拟的地表温度和水汽差别并不大。总体而言,采用PX陆面方案对降水的模拟效果比采用其他方案都合理,与实况最接近。  相似文献   

17.
This work assesses the influence of the model physics in present-day regional climate simulations. It is based on a multi-phyiscs ensemble of 30-year long MM5 hindcasted simulations performed over a complex and climatically heterogeneous domain as the Iberian Peninsula. The ensemble consists of eight members that results from combining different parametrization schemes for modeling the Planetary Boundary Layer, the cumulus and the microphysics processes. The analysis is made at the seasonal time scale and focuses on mean values and interannual variability of temperature and precipitation. The objectives are (1) to evaluate and characterize differences among the simulations attributable to changes in the physical options of the regional model, and (2) to identify the most suitable parametrization schemes and understand the underlying mechanisms causing that some schemes perform better than others. The results confirm the paramount importance of the model physics, showing that the spread among the various simulations is of comparable magnitude to the spread obtained in similar multi-model ensembles. This suggests that most of the spread obtained in multi-model ensembles could be attributable to the different physical configurations employed in the various models. Second, we obtain that no single ensemble member outperforms the others in every situation. Nevertheless, some particular schemes display a better performance. On the one hand, the non-local MRF PBL scheme reduces the cold bias of the simulations throughout the year compared to the local Eta model. The reason is that the former simulates deeper mixing layers. On the other hand, the Grell parametrization scheme for cumulus produces smaller amount of precipitation in the summer season compared to the more complex Kain-Fritsch scheme by reducing the overestimation in the simulated frequency of the convective precipitation events. Consequently, the interannual variability of precipitation (temperature) diminishes (increases), which implies a better agreement with the observations in both cases. Although these features improve in general the accuracy of the simulations, controversial nuances are also highlighted.  相似文献   

18.
Measurements of fluxes and profiles of wind andtemperature are performed in the roughness layer ofa moderately homogeneous forest location. Weinvestigate to what extent vertical scalar fluxescan be derived from profile measurements. Theinfluence of inhomogeneities in the upwind terrainis investigated with footprint analysis and with aninhomogeneous surface-layer model. Four methods toestimate displacement height are suggested, amongthem is a method involving the structure parameterof the vertical wind. All methods give a decrease ofdisplacement height with increasing wind speed,while roughness length is found to increase withincreasing wind speed. For near-neutral conditionsdimensionless temperature gradients are found to besubstantially lower than the surface-layer valuesfound in the literature for homogeneous terrain with lowvegetation. Dimensionless shear however iscomparable with the surface-layer value. The heightof the roughness layer is 20 times the roughnesslength. Two schemes with locally derived surfaceparameters are tested to derive friction velocityand sensible heat flux from the profilemeasurements. These site specific schemes performsatisfactorily. A third scheme based on surface parameters chosen a priorifrom the literatureperforms significantly worse especially for low windspeed and unstable cases.  相似文献   

19.
中尺度大气数值模式发展现状和应用前景   总被引:31,自引:12,他引:19  
程麟生 《高原气象》1999,18(3):350-360
对国内外当前一些先进的中尺度大气数值模式的发展现状,应用前景及发展趋势作了概要综述。其内容包括:模式动力学的改进,叫就度模拟系统特征,区域谱模 发展积云参数化和显式云物理方案,行星边界层参数化,大气辐射参数、四维资料同化,区域实时数值天气预报,中尺度数值天气预报应用前景及新一代中尺度模式发展趋势。  相似文献   

20.
Accurately representing complex land-surface processes balancing complexity and realism remains one challenge that the weather modelling community is facing nowadays. In this study, a photosynthesis-based Gas-exchange Evapotranspiration Model (GEM) is integrated into the Noah land-surface model replacing the traditional Jarvis scheme for estimating the canopy resistance and transpiration. Using 18-month simulations from the High Resolution Land Data Assimilation System (HRLDAS), the impact of the photosynthesis-based approach on the simulated canopy resistance, surface heat fluxes, soil moisture, and soil temperature over different vegetation types is evaluated using data from the Atmospheric Radiation Measurement (ARM) site, Oklahoma Mesonet, 2002 International H2O Project (IHOP_2002), and three Ameriflux sites. Incorporation of GEM into Noah improves the surface energy fluxes as well as the associated diurnal cycle of soil moisture and soil temperature during both wet and dry periods. An analysis of midday, average canopy resistance shows similar day-to-day trends in the model fields as seen in observed patterns. Bias and standard deviation analyses for soil temperature and surface fluxes show that GEM responds somewhat better than the Jarvis scheme, mainly because the Jarvis approach relies on a parametrised minimum canopy resistance and meteorological variables such as air temperature and incident radiation. The analyses suggest that adding a photosynthesis-based transpiration scheme such as GEM improves the ability of the land-data assimilation system to simulate evaporation and transpiration under a range of soil and vegetation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号