首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
人造热带气旋垂直结构问题初探   总被引:1,自引:1,他引:1       下载免费PDF全文
龚龑  陆维松 《气象科学》2005,25(5):459-464
在人造热带气旋中引入了倾斜垂直结构,并将其用于西折后9806号热带气旋登陆路径的数值模拟。结果表明:应用该方案所得到的模拟结果优于应用正压结构的人造热带气旋方案的模拟结果要准确。因此,此类热带气旋的预报中,其初始涡旋可采用倾斜垂直结构,从而提出改进热带气旋初始涡旋的一种新思路。若对其作进一步研究、推广,则具有广阔的业务应用前景。  相似文献   

2.
海气相互作用对“格美”台风发展的影响研究   总被引:3,自引:3,他引:0  
刘磊  费建芳  林霄沛 《大气科学》2011,35(3):444-456
西北太平洋是全球唯一一年四季都有热带气旋生成的海域,同时,我国沿海紧临该海域,是受热带气旋影响最为严重的国家之一.本文通过建立海气耦合模式,以西北太平洋西边界流系源区为研究区域,通过对"格美"台风的数值模拟结果分析,研究海气相互作用对热带气旋发展的影响,对提高台风的数值模拟及预报水平有重要意义.研究表明:耦合作用引起的...  相似文献   

3.
·ElNino和LaNina冬季增强型和减弱型及其对中国夏季旱涝的影响·黄海气旋数值模拟的可视化·利用随机天气模式及多种插值方法生成逐日天气变化情景的研究·华北地区冬小麦光合作用的光响应曲线的特征参数·甘肃省雨养农业区土壤水分变化规律的研究·拉萨地区1998年夏季臭氧总量及垂直廓线的观测研究下期要目  相似文献   

4.
利用观测资料、FY-2C卫星云图和NCEP再分析资料,对2003年6月22—23日黄河下游的气旋爆发性发展过程进行天气学分析和中尺度数值模拟与诊断,研究这次爆发性气旋的发展特征。结果表明:河套高空槽东移与山东南部的切变线合并产生这次爆发性气旋。MM5数值模式可以很好地模拟夏季陆地爆发性气旋发展过程。夏季陆地爆发性气旋发生在与高度场气旋性弯曲相重合的高空急流出口区,气旋从急流出口区右侧向左侧行进的过程中爆发性发展。气旋爆发性发展需要高空有急流,低空有西南和东南风急流为其提供强的暖平流和水汽通道。气旋的爆发性发展伴随着上升运动强烈发展,上升运动区高层强辐散、低层强辐舍。气旋爆发性发展在高能场中,大气具有强对流性不稳定。  相似文献   

5.
双热带气旋相互作用的机制分析及数值研究 Ⅱ:数值模拟   总被引:2,自引:0,他引:2  
在本文第Ⅰ部分关于双热带气旋相互作用物卵机制分析的基础上,利用正压原始方程模式对,平面上无大尺度环境流场情况下双热带气旋的相互作用进行了数值模拟研究,重点考察了双热带气旋水平流场相互作用的次级环流机制,文[1]中所提出的双热带气旋相互作用的临界距离效应概念在模式中得到了验证.同时通过模拟还发现,双热带气旋的联合强度越强、中心间距越小,则互旋越快;对于相互吸引的双热带气旋而言,合并后范围有所扩大,强度有一定的加强,并且较强的两个热带气旋比一强一弱的两个热带气旋维持的时间要长、较难于合并.这些结果与实际双热带气旋相互作用的观测事实极为一致.  相似文献   

6.
登陆热带气旋与夏季风相互作用对暴雨的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
利用《热带气旋年鉴》资料、NCEP/NCAR再分析资料采用动态合成分析方法,研究了登陆热带气旋降水与夏季风急流之间的关系,同时对登陆热带气旋与夏季风急流发生相互作用的典型个例强热带风暴Bilis (0604) 利用数值模拟方法研究了二者之间的相互作用对暴雨的影响。结果表明:登陆后造成大范围强降水的热带气旋往往与低层急流长时间相连,其水汽通量和潜热能显著大于弱降水热带气旋。数值试验结果表明:夏季风低空急流向热带气旋输送水汽对热带气旋结构维持有利,当水汽输送被截断后,热带气旋气旋性结构被破坏,强降水减弱、范围明显缩小;季风急流风速增强时可增加水汽通量输送,使得强降水范围增加、强度增强;在夏季风影响背景下,热带气旋在陆上的移动改变水汽和不稳定能量的分布,而热带气旋本身独特的动力结构使得强降水强度增加。  相似文献   

7.
双热带气旋相互作用的机制分析及数值研究 II:数值模拟   总被引:1,自引:2,他引:1  
王玉清  朱永禔 《大气科学》1992,16(6):659-668
在本文第Ⅰ部分关于双热带气旋相互作用物卵机制分析的基础上,利用正压原始方程模式对,平面上无大尺度环境流场情况下双热带气旋的相互作用进行了数值模拟研究,重点考察了双热带气旋水平流场相互作用的次级环流机制,文[1]中所提出的双热带气旋相互作用的临界距离效应概念在模式中得到了验证.同时通过模拟还发现,双热带气旋的联合强度越强、中心间距越小,则互旋越快;对于相互吸引的双热带气旋而言,合并后范围有所扩大,强度有一定的加强,并且较强的两个热带气旋比一强一弱的两个热带气旋维持的时间要长、较难于合并.这些结果与实际双热带气旋相互作用的观测事实极为一致.  相似文献   

8.
热带气旋生成过程的中尺度涡旋活动数值模拟   总被引:1,自引:1,他引:0  
姜舒婕  吴立广  梁佳 《气象科学》2016,36(6):779-788
热带气旋生成过程中包含不同尺度环流及其相互作用。为此,本文将热带气旋生成数值模拟的起点提前到模拟中尺度涡旋(MCV)的生成,从而利用高分辨率数值试验结果,对热带气旋过程中的不同尺度涡旋活动进行分析。模式首先模拟了季风涡旋的东南侧增强的西南气流中出现低形变旋转性扰动,随着扰动的旋转性增强,中层出现水平尺度为200 km左右的MCV。在扰动区内的不同高度上还发现10~20 km尺度不等的中γ气旋性涡旋扰动,其中部分涡旋扰动具有热塔的特征,中γ气旋性涡旋扰动在MCV的旋转环境内不断组织化,低层气旋性涡旋扰动的分布比中层更加集中。模拟表明这些较小尺度的气旋性中尺度涡旋扰动对热带气旋的生成有重要作用。  相似文献   

9.
沈武 《浙江气象》2000,21(3):1-3,7
对两个相同或不同尺度热带气旋性涡旋相互作用的研究成果进行了分析和探讨,认为数值模拟和大气动力学理论分析的研究是进一步认识双热带气旋性涡旋相互作用的物理机制,提高预报双热带气旋性涡旋相互作用引发热带气旋异常路径业务能力的有效途径;继续这一领域的研究工作是非常必要的。  相似文献   

10.
0216号台风降水及其影响降水机制的数值模拟试验   总被引:63,自引:8,他引:55  
文中用MM5模式对 0 2 16号台风 (森拉克 )降水进行了数值模拟 ,取得了较好的效果。模拟得到的台风降水中心强度和位置以及降水的分布与实况基本相符。文中还对影响热带气旋降水的机制进行数值模拟试验。结果表明 :冷空气入侵热带气旋外围可以大幅度增加热带气旋外围及倒槽的降水 ,但入侵到热带气旋中心附近的冷空气使热带气旋强度减弱 ,造成中心附近降水明显减少 ,但其外围与倒槽的降水明显加大 ;地形作用使迎风坡及降水中心增加雨量 ,背风坡雨量减少 ,从而使降水分布更不对称、更不均匀 ;大陆及其近海的湿度场对热带气旋降水有较大的影响。  相似文献   

11.
The information-reference system contains the aggregate data of long-term observations and generalized results of investigations on the ice coverage of the Bering Sea, the Sea of Okhotsk, and the Sea of Japan, represented in the form of tabular, graphic, and text materials. It consists of the information block, electronic atlas, observation data archive, and user software for the work in the Internet medium. The software of the electronic atlas provides the possibility of the access to the archive data and visualization of all accessible information on discrete maps of variable scales in the dynamic mode according to the user’s query. The system enables to provide the fast access to the specially selected, generalized information, dispersed in different sources and, therefore, limited for the wide use.  相似文献   

12.
以中国地图为底图的插图在气象科技论文中较为常见。针对中国地图中南海诸岛附图的规范表达形式,应用GRADS(Grid Analysis and Display System)绘图软件,详细给出了正确绘制中国地图中南海诸岛附图的*.gs文件程序,利于同行参考和规范制图。  相似文献   

13.
The technology of waterspout monitoring over the Russian part of the Black Sea is presented. The technology was developed using the foreign experience of tornado and waterspout prediction and the data from the meteorological observation network of the Russian Federation. The technology is based on the software for the organization and maintenance of operational database including the data of satellite imagery, numerical weather prediction models, lightning detection systems, and weather radars. It was found that the results of the use of the presented technology for analyzing waterspout-risk conditions during the waterspout season are of the greatest interest. The waterspout season in the Black Sea area usually begins in May and ends in September. The review of waterspout occurrence over the Russian part of the Black Sea in 2014 is presented.  相似文献   

14.
The response of the Weddell Sea and Antarctic Peninsula to anthropogenic forcing simulated by a global climate model is analyzed. The model, despite its low resolution, is able to capture several aspects of the observed regional pattern of climate change. A strong warming and depletion of the sea ice cover in the western Weddell Sea contrasts with a slight cooling and a sea-ice extension in the eastern Weddell Sea. This simulated long-term climate change is modulated by interdecadal variability but also affected by some abrupt regional changes in the oceanic mixed layer depth. Between 1960 and 2030 a reorganization of the deep convection activity in the Weddell Sea sustains the opposition between the eastern and western Weddell Sea. The deep convection collapses in the western Weddell Sea in the 2030s. The sea ice retreat trend is then followed by an increase of the sea ice cover in the western Weddell Sea. In the eastern Weddell Sea another abrupt collapse of the deep convection activity occurs around 2080. This event is followed by a rapid cooling and sea ice extension during the next 20 years. Most of the surface changes are associated with large-scale atmospheric circulation changes that project on the dominant mode of natural variability but also with oceanic convection and circulation changes.  相似文献   

15.
Arne Eide 《Climatic change》2008,87(1-2):251-262
The Barents Sea area is characterised by a highly fluctuating physical environment causing substantial variations in the ecosystems and fisheries depending upon this. Simulations assuming different management regimes have been carried out to study how physical and biological effects of global warming influence the Barents Sea cod fisheries. A regional, high-resolution representation of the B2 world region (OECD90) scenario from the Intergovernmental Panel on Climate Change was used to calculate water temperatures and plankton biomasses by hydrodynamic modelling. These results were included in simulations performed by a multi-fleet, multi-species model, by which a fully integrated model linking to the global circulation model to the Barents Sea fisheries through a regional downscaling to the Barents Sea area is constructed. One factor of particular importance for the natural annual biological variations is the occasional inflow of young herring into the Barents Sea area. The herring inflow is difficult to predict and links to dynamical systems outside the Barents Sea area, complex recruitment mechanisms and oceanographic conditions. These processes are in the study represented by a stochastic representation of herring inflow based on historical observations. According to the performed simulations the biomass fluctuations may slightly increase over the next 25 years, possibly caused by changes in temperature patterns. Six different management regimes have been included in the study and the results support earlier studies claiming that the choice of management regime potentially has a greater importance for biological and economic performance in the Barents Sea fisheries than impacts which derive from global warming over the next 25 years. A basic assumption for this conclusion is however that the Barents Sea ecosystem essentially preserves its structure and composition of today. Possible, unpredictable significant shifts in the ecosystem structure are not considered.  相似文献   

16.
基于IDL的MODIS1B数据SST反演   总被引:2,自引:1,他引:1  
海表温度是重要的海洋环境参数。MODIS(Moderate Resolution Imaging Spectrora-diometer)具有强大的海洋信息探测功能。采用多通道分裂窗算法,通过交互式数据语言IDL编程,实现了直接利用MODIS1B数据进行海表温度(SST)反演,并将反演结果存贮为标准的HDF文件以供其他软件使用。该方法能够适应对整条轨道的MODIS1B数据进行快速、实时和自动处理,大大节省人力资源,同时提高遥感产品数据的分发和共享能力。  相似文献   

17.
0703温带气旋特大风暴潮数值模拟对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为验证德国汉堡大学所开发的三维陆架模式HAMSOM(Hamburg Shelf Ocean Model)对渤海海域气旋风暴潮模拟的可行性和准确度, 并对不同来源气象数据的模拟结果进行比较, 分别使用T213和NCEP资料的风场和气压场数据, 运用HAM SOM模式对2007年3月4—5日发生在渤海和黄海北部的气旋风暴潮增水过程进行了数值模拟。模拟结果较好地反映出烟台、威海两站风暴潮增水过程的水位变化, 较准确地模拟出风暴潮在渤海、黄海北部的增水过程, 且T213资料比NCEP资料的模拟结果更接近实况, 该模式对研究和模拟渤海气旋风暴潮比较适用。  相似文献   

18.
Sea ice variability in the Barents Sea and its impact on climate are analyzed using a 465-year control integration of a global coupled atmosphere–ocean–sea ice model. Sensitivity simulations are performed to investigate the response to an isolated sea ice anomaly in the Barents Sea. The interannual variability of sea ice volume in the Barents Sea is mainly determined by variations in sea ice import into Barents Sea from the Central Arctic. This import is primarily driven by the local wind field. Horizontal oceanic heat transport into the Barents Sea is of minor importance for interannual sea ice variations but is important on longer time scales. Events with strong positive sea ice anomalies in the Barents Sea are due to accumulation of sea ice by enhanced sea ice imports and related NAO-like pressure conditions in the years before the event. Sea ice volume and concentration stay above normal in the Barents Sea for about 2 years after an event. This strongly increases the albedo and reduces the ocean heat release to the atmosphere. Consequently, air temperature is much colder than usual in the Barents Sea and surrounding areas. Precipitation is decreased and sea level pressure in the Barents Sea is anomalously high. The large-scale atmospheric response is limited with the main impact being a reduced pressure over Scandinavia in the year after a large ice volume occurs in the Barents Sea. Furthermore, high sea ice volume in the Barents Sea leads to increased sea ice melting and hence reduced surface salinity. Generally, the climate response is smallest in summer and largest in winter and spring.  相似文献   

19.
 The origin and space-time evolution of Beaufort-Chukchi Sea ice anomalies are studied using data and a recently developed dynamic-thermodynamic sea-ice model. First, the relative importance of anomalies of river runoff, atmospheric temperature and wind in creating anomalous sea-ice conditions in the Beaufort-Chukchi Sea is investigated. The results indicate that wind anomalies are the dominant factor responsible for creating interannual variability in the Beaufort-Chukchi Sea ice cover. Temperature anomalies appear to play a major role for longer time scale fluctuations, whereas the effects of runoff anomalies are small. The sea-ice model is then used to track the position of a positive sea-ice anomaly as it is transported by the Beaufort Gyre toward the Transpolar Drift Stream and then exported out of the Arctic Basin into the Greenland Sea via Fram Strait. The model integration shows that sea-ice anomalies originating in the western Beaufort Sea can survive a few seasonal cycles as they propogate through the Arctic Basin and can account for a notable amount of anomalous ice export into the Greenland Sea. These anomalies, however, represent a small contribution to the fresh water budget in this area when compared with sea-ice fluctuations generated by interannually varying local winds. Received: 1 May 1997/Accepted: 22 October 1997  相似文献   

20.
OLR与南海热带气旋发展的关系   总被引:1,自引:1,他引:1       下载免费PDF全文
利用OLR资料,对近十多年(1990~2000年)的南海热带气旋的发生、发展与OLR之间的关系进行了分析研究。研究结果表明:南海热带低压能否发展加强成热带风暴与南海区及其附近OLR值的变化有较好的对应关系;OLR低值中心存在于辐合带中热带低压易发展;在双台风状态下,两个低值中心的强弱情况和距离决定热带低压能否发展。通过定义一个南海热带低压的发展指数IOD(Index of Development)来定量描述OLR等值线的梯度变化和南海热带低压发展的关系;当南海热带低压的发展指数IOD≥9时,热带低压易发展成为热带风暴  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号