首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Different procedures are compared for the three-dimensional seismic cracking analysis of gravity and arch dams during strong earthquakes. The fracture procedures include the extended finite element method with cohesive constitutive relations, crack band finite element method with plastic-damage relations, and the finite element Drucker−Prager elasto-plastic model. These procedures are used to analyze the nonlinear dynamic response of Koyna dam to the 1967 Koyna earthquake and the seismic cracking of the Dagangshan arch dam subjected to design earthquake. The cracking process and profiles of the two dams using the three different procedures are compared. The applicability and the suitability of the three procedures for seismic cracking analysis of gravity and arch dams are discussed.  相似文献   

2.
The previously developed two-dimensional boundary element procedure for analysing the propagation of a single discrete crack is extended to simultaneous multiple cracking in concrete gravity dams. A brief discussion of the generalized methodology is presented and the validity of the extended procedure is verified by performing a fracture analysis of the Fongman dam and comparing the predicted rupture process with the available experimental results. The fracture response of the Koyna dam is then studied extensively under the Koyna earthquake. Both single and multiple cracking models are employed to investigate the fracture process as well as final rupture in the dam. Similar final damage involving complete separation of the crest block of the dam is predicted, irrespective of whether single or multiple crack propagation models are employed. In relation to the phenomenon of hydrodynamic uplift pressure within propagating cracks, openings of the crack on the upstream face of the dam are examined in particular. The results indicate that this phenomenon is not expected to be significant during the crack development phase, and hence unlikely to affect the final rupture characteristics of dams undergoing strong earthquake excitation.  相似文献   

3.
A number of questions concerning the response of concrete gravity dams to earthquakes, motivated by the structural damage caused to Koyna Dam, which has an unconventional cross section, by the December 1967 Koyna earthquake, are considered in this work. The study is not restricted to the earthquake experience at Koyna Dam, but includes consideration of a dam with a typical section and another earthquake motion having similar intensity but different peak acceleration and frequency characteristics compared to the Koyna ground motion. The earthquake response in a number of cases is analysed by the finite element method and results are presented. These results lead to a number of conclusions. Significant tensile stresses must have developed in Koyna Dam during the Koyna earthquake and similar stresses would have developed even in typical gravity dam sections. The Koyna ground motion is relatively more severe, compared to California earthquakes of similar intensity, on concrete gravity dams. The extra concrete mass near the crest of a gravity dam to support the roadway, etc. is responsible for causing a significant part of the critical tensile stresses; attention should therefore be given to developing lightweight supporting systems.  相似文献   

4.
A new plastic-damage constitutive model for cyclic loading of concrete has been developed for the earthquake analysis of concrete dams. The rate-independent model consistently includes the effects of strain softening, represented by separate damage variables for tension and compression. A simple scalar degradation model simulates the effects of damage on the elastic stiffness and the recovery of stiffness after cracks close. To simulate large crack opening displacements, the evolution of inelastic strain is stopped beyond a critical value for the tensile damage variable. Subsequent deformation can be recovered upon crack closing. The rate-independent plastic-damage model forms the backbone model for a rate-dependent viscoplastic extension. The rate-dependent regularization is necessary to obtain a unique and mesh objective numerical solution. Damping is represented as a linear viscoelastic behaviour proportional to the elastic stiffness including the degradation damage. The plastic-damage constitutive model is used to evaluate the response of Koyna dam in the 1967 Koyna earthquake. The analysis shows two localized cracks forming and then joining at the change in geometry of the upper part of the dam. The upper portion of the dam vibrates essentially as rigid-body rocking motion after the upper cracks form, but the dam remains stable. The vertical component of ground motion influences the post-cracking response. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Strong motion duration is one of the challenging characteristics of ground motion, which affects the cumulative damage of structures significantly. Many researchers have conducted investigations related to the effects of strong motion duration on the response of building structures. However, the corresponding studies of concrete gravity dams are limited. In this paper, the effects of strong motion duration on the accumulated damage of concrete gravity dams are investigated. A Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is selected for the concrete material. This model is used to evaluate the nonlinear dynamic response and seismic damage process of Koyna dam during 1976 Koyna earthquake. Subsequently, the damage analyses of Koyna dam subjected to earthquake motions with different strong motion durations are performed. 20 as-recorded accelerograms, which are modified to match a 5% damped target spectrum, are considered in this study. Strong motion durations are obtained based on the definition of significant duration. According to the characteristics of the cracking damage development, both local and global damage indices are established as the response parameters. The results show that strong motion duration is positively correlated to the accumulated damage for events with similar response spectrum, and has significant influence on the cumulative damage of the dam. Longer duration will lead to greater accumulation damage to which aseismic design of the dam should be given attention.  相似文献   

6.
The Koyna Dam in India was subjected to a severe earthquake on 11 December 1967 with its epicentre very close to the dam site. During this earthquake, higher non-overflow monoliths of the dam suffered significant damage. In the highest non-overflow monolith, a horizontal crack occurred at the level where there was an abrupt change in the downstream slope. The dynamic behaviour of the top profile of this monolith of the dam above the crack has been investigated treating it as a rigid body. The study shows that the overturning of the cracked portion of the dam will not occur due to the severest anticipated ground motion at the site. However, to prevent the seepage of water and as a permanent remedial measure, strengthening of the dam is necessary but no emergency measures need be taken.  相似文献   

7.
In this study, the earthquake damage response of the concrete gravity dams is investigated with considering the effects of dam–reservoir interaction. A continuum damage model which is a second-order tensor and includes the strain softening behavior is selected for the concrete material. The mesh-dependent hardening technique is adopted such that the fracture energy dissipated is not affected by the finite element mesh size. The dynamic equilibrium equations of motion are solved by using the improved form of the HHT-α time integration algorithm. Two dimensional seismic analysis of Koyna gravity dam is performed by using the 1967 Koyna earthquake records. The effects of damage on the earthquake response of concrete gravity dams are discussed. Comparison of the Westergaard and Lagrangian dam–reservoir interaction solutions is made. The effects of viscous damping ratio on the damage response of the dam are also studied.  相似文献   

8.
A numerical procedure for evaluation of the fracture process of gravity dams during strong earthquakes is presented. The BEM is used to discretize the dam reservoir system including the crack surfaces, and stress intensity factors at the crack tip are employed in a stage by stage procedure which simulates the crack extension. For each stage of constant crack length the mode superposition technique is applied; this is made possible by simulating the impact process of crack closing by a load pulse applied at the contact points which permits the structural stiffness to be assumed unchanged. To verify the proposed procedure, a cantilever beam model structure made of gypsum was tested on a shaking table. Good correlation with the numerical results was obtained, from which it is concluded that the procedure can be employed for evaluation of the crack propagation process in concrete structures subjected to dynamic loadings.  相似文献   

9.
Tensile stresses exceeding the tensile strength of concrete can develop in concrete dams subjected to earthquake ground motion. This study examines the earthquake response of gravity dams including tensile cracking of the concrete. The interaction between the dam and compressible water is included in the analysis using a numerical procedure for computing the non-linear dynamic response of fluid-structure systems. The crack band theory is used to model tensile cracking with modifications to allow for the large finite elements necessary for dam analysis. The earthquake response of a typical gravity dam monolith shows that concrete cracking is an important non-linear phenomenon. Cracking is concentrated near the base of the dam and near the discontinuities in the face slope. The extensive cracking, which develops due to ground motion typical of maximum credible earthquakes, may affect the stability of dams during and after strong earthquakes.  相似文献   

10.
There are several alternatives to evaluate seismic damage‐cracking behavior of concrete arch dams, among which damage theory is the most popular. A more recent option introduced for this purpose is plastic–damage (PD) approach. In this study, a special finite element program coded in 3‐D space is developed on the basis of a well‐established PD model successfully applied to gravity dams in 2‐D plane stress state. The model originally proposed by Lee and Fenves in 1998 relies on isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity to capture inelastic behaviors of concrete in cyclic or dynamic loadings. The present implementation is based on the rate‐dependent version of the model, including large crack opening/closing possibilities. Moreover, with utilizing the Hilber–Hughes–Taylor time integration scheme, an incremental–iterative solution strategy is detailed for the coupled dam–reservoir equations while the damage–dependent damping stress is included. The program is initially validated, and then, it is employed for the main analyses of the Koyna gravity dam in a 3‐D modeling as well as a typical concrete arch dam. The former is a major verification for the further examination on the arch dam. The application of the PD model to an arch dam is more challenging because the governing stress condition is multiaxial, causing shear damage to become more important than uniaxial states dominated in gravity dams. In fact, the softening and strength loss in compression for the damaged regions under multiaxial cyclic loadings affect its seismic safety. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Owing to the devastating M7.6 earthquake of 20 June 1990 that occurred in the northern province of Iran, Sefid‐rud concrete buttress dam located near the epicenter was severely shaken. The crack penetrated throughout the dam thickness near slope discontinuity, causing severe leakage, but with no general failure. In this study, nonlinear seismic response of the highest monolith with empty reservoir is investigated experimentally through model testing. A geometric‐scaled model of 1:30 was tested on a shaking table with high‐frequency capability to study dynamic cracking of the model and serve as data for nonlinear computer model calibration. Three construction joints are set up in the model to simulate effects of construction aspects. The experimental results are then compared with smeared crack and damage mechanics finite‐element simulations using nonlinear concrete constitutive models based on fracture mechanics. The crack patterns obtained from numerical models are in good agreement with those obtained from shaking table tests for the case of including construction joint effects and rigid foundation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A large mainshock may trigger numerous aftershocks within a short period, and large aftershocks have the potential to cause additional cumulative damage to structures. This paper investigates the effects and potential of aftershocks on the accumulated damage of concrete gravity dams. For that purpose, 30 as-recorded mainshock–aftershock seismic sequences are considered in this study, and a typical two-dimensional gravity dam model subjected to the selected as-recorded seismic sequences is modeled. A Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is selected for the concrete material. This model is used to evaluate the nonlinear dynamic response and the seismic damage process of Koyna dam under mainshock–aftershock seismic sequences. According to the characteristics of the cracking damage development, the local and global damage indices are both established to study the influence of strong aftershocks on the cumulative damage of concrete gravity dams. From the results of this investigation, it is found that the as-recorded sequences of ground motions have a significant effect on the accumulated damage and on the design of concrete gravity dams.  相似文献   

13.
Sefid‐rud concrete buttress dam with a height of 106 m was damaged during the devastating 1990 Manjil earthquake. The dam was repaired and strengthened using epoxy grouting of cracks and the installation of post‐tensioned anchors. In a previous study, nonlinear seismic response of the highest monolith with empty reservoir was investigated experimentally through model testing. A geometric‐scaled model of 1:30 was tested on a shaking table to study dynamic cracking of the model. As a result of the similarity between model and prototype cracking pattern, the model was retrofitted according to prototype retrofitting plan after the Manjil earthquake and re‐tested on shaking table to estimate the current safety of the prototype. Experimental test results showed that the post‐tensioning resulted in a significant decrease in dynamic responses in terms of crest displacement and measured strains of the retrofitted model in comparison with its corresponding responses at the first test. No cracking was observed in the retrofitted model when the base motion peak acceleration exceeded a value that was 22% higher than the one caused cracking in the first model. This can be interpreted as the efficiency of prototype post‐tensioning system in evaluating the seismic safety of Sefid‐rud dam. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A smeared crack approach has been proposed to model the static and dynamic behavior of mass concrete in three‐dimensional space. The proposed model simulates the tensile fracture on the mass concrete and contains pre‐softening behavior, softening initiation, fracture energy conservation and strain rate effects under dynamic loads. The validity of the proposed model has been checked using the available experimental results under static and dynamic loads. The direct and indirect displacement control algorithms have been employed under incremental increasing static loads. It was found that the proposed model gives excellent results and crack profiles when compared with the available data under static loads. The Koyna Dam in India has been used to verify the dynamic behavior of the proposed model. It was found that the resulting crack profiles were in good agreement with the available experimental results. Finally, the Morrow Point Dam was analyzed, including the dam–reservoir interaction effects, to consider its non‐linear seismic behavior. It was found that the resulting crack profiles were in good agreement with the contour of maximum principal stresses and no numerical instability occurred during the analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Limited reports of repeat triangulation and levelling surveys carried out in the Koyna region by Survey of India, before and after the 1967 Koyna earthquake, are available. We analyse these observations of horizontal and vertical displacements to investigate whether analysis of these observations can provide additional constraints on the source parameters of the 1967 Koyna earthquake. We calculate surface displacements due to coseismic slip on the subsurface rupture of the 1967 Koyna earthquake and also due to the Koyna reservoir water load. We find that the reported displacements are too large to be attributed to the coseismic displacements and/or to the displacements induced by the reservoir water load. We conclude that these observations contain large random and systematic errors.  相似文献   

16.
This paper proposes a new algorithm for modeling the nonlinear seismic behavior of fractured concrete gravity dams considering dam–reservoir interaction effects. In this algorithm, the cracked concrete gravity dam is modeled by distinct element (DE) method, which has been widely used for the analysis of blocky media. Dynamic response of the reservoir is obtained using boundary element (BE) method. Formulation and various computational aspects of the proposed staggered hybrid approach are thoroughly discussed. To the authors' knowledge, this is the first study of a hybrid DE–BE approach for seismic analysis of cracked gravity dam–reservoir systems. The validity of the algorithm is discussed by developing a two-dimensional computer code and comparing results obtained from the proposed hybrid DE–BE approach with those reported in the literature. For this purpose, a few problems of seismic excitations in frequency- and time-domains, are presented using the proposed approach. Present results agree well with the results from other numerical methods. Furthermore, the cracked Koyna Dam is analyzed, including dam–reservoir interaction effects with focus on the nonlinear behavior due to its top profile crack. Results of the present study are compared to available results in the literature in which the dam–reservoir interaction were simplified by added masses. It is shown that the nonlinear analysis that includes dam–reservoir interaction gives downstream sliding and rocking response patterns that are somehow different from that of the case when the dam–reservoir interaction is approximated employing added masses.  相似文献   

17.
This paper discusses the local approach of fracture using damage mechanics concepts to evaluate the seismic response of concrete gravity dams. A constitutive model for plain concrete, subjected to tensile stresses, is presented. The mesh-dependent hardening technique is adopted such that the fracture energy dissipated is not affected by the finite element mesh size. The model is implemented in conjunction with the Hilber, Hughes Taylor alpha algorithm for time marching. Koyna dam is utilized to validate the proposed formulation. The importance of initial damage prior to the advent of an earthquake is also investigated. A 60 m concrete gravity dam is therefore selected and subjected to ground motion typical of eastern North America. Five scenarios of initial damage are presented and the results confirm the importance of accounting for the initial state for the seismic safety evaluation of an existing dam.  相似文献   

18.
基于正交展开的非平稳随机地震动模型,并考虑混凝土材料的非线性和坝体与库水之间的流固耦合,对印度Koyna重力坝进行有限元分析,得到坝顶水平位移和坝颈拉应力,结合概率密度演化方法和等价极值事件的思想,获得丰富的概率信息。这为坝体结构的随机地震反应分析和可靠度研究提供新的途径。  相似文献   

19.
An experimental study of non-linear mechanisms that may occur during intense seismic response of arch dams is described in this paper. The presentation deals with three types of non-linearity that were observed during shaking table model studies: monolith joint opening, cantilever cracking, and reservoir cavitation at the dam face. The monolith joint opening phenomenon was represented by a segmental arch ring model that simulated a horizontal slice of a prototype dam. The cantilever cracking and reservoir cavitation mechanisms were studied using a model gravity dam section. The principal conclusion of the investigation was that shaking table experiments provide a practical means of studying the non-linear earthquake response of concrete arch dams, including their actual failure mechanisms.  相似文献   

20.
利用大型振动台模型试验,测得了猴子岩高面板堆石坝缩尺模型坝的动力特性参数,包括大坝结构的自振频率、阻尼比和振型系数等;分析了多种因素对坝体动力特性的影响规律;根据模型试验相似率推算得到原型坝的相应动力特性参数。研究表明:大坝结构有相对稳定的振型;坝体的动力特性参数值受激振白噪声强度和振动历史等因素影响;水库蓄水使得模型坝结构自振频率小幅提升。这些试验结果和研究结论,可以为该坝的动力分析提供基本资料和定性参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号