首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In the paper, an autopilot system composed of sliding mode controller and line-of-sight guidance technique are adopted to navigate the ship in random waves by altering the rudder deflection. Two kinds of sliding mode controller are considered; one is the separate system including sway–yaw control and roll control, the other is the compact system considering sway–roll–yaw control altogether. Both track keeping and roll reduction are accomplished by rudder control and the design parameters of controller are optimized by genetic algorithm. The present simulation results show both the separate controller and the compact controller work quite well, either for track keeping or roll reduction while the ship is sailing in random waves. However, the separate controller is recommended due to its simplicity.  相似文献   

2.
大深度载人潜水器低速大漂角模糊滑模航向控制研究   总被引:1,自引:0,他引:1  
马岭  崔维成 《海洋工程》2006,24(3):74-78
通过模型试验测量大深度载人潜水器低速大漂角运动时所受到的非线性水动力。基于一种新的模糊滑模控制策略,为潜水器设计了鲁棒航向控制器。在不同的漂角子区间内分别设计局部镇定的滑模控制器,然后通过Takagi-Sugeno模糊推理系统将它们光滑连接,得到模糊滑模控制。仿真计算结果充分显示了该控制策略的有效性。  相似文献   

3.
水下机器人-机械臂系统的滑模自抗扰控制   总被引:1,自引:0,他引:1  
李小岗  王红都  黎明  刘鑫 《海洋科学》2020,44(9):130-138
针对水下机器人机械臂系统的强耦合、强非线性、复杂海洋多源干扰等因素影响,提出了滑模自抗扰控制器,将复杂系统模型转变为简单的积分串联系统,将内部参数不确定性、测量误差、建模误差和海洋多源干扰等扰动归结为总扰动,并采用线性扩张观测器对其进行估计并抵消。利用滑模控制器提高系统对参数摄动的不敏感性,增强控制系统的抗干扰性能,通过李雅普诺夫理论分析了控制系统的有界稳定性。仿真结果表明滑模自抗扰与传统滑模控制和自抗扰控制相比,能使水下机器人机械臂实现更好的轨迹跟踪,且系统具有更好的抗干扰能力。  相似文献   

4.
This work demonstrates the feasibility of applying a sliding mode fuzzy controller to motion control and line of sight guidance of an autonomous underwater vehicle. The design method of the sliding mode fuzzy controller offers a systematical means of constructing a set of shrinking-span and dilating-span membership functions for the controller. Stability and robustness of the control system are guaranteed by properly selecting the shrinking and dilating factors of the fuzzy membership functions. Control parameters selected for a testbed vehicle, AUV-HM1, are evaluated through tank and field experiments. Experimental results indicate the effectiveness of the proposed controller in dealing with model uncertainties, non-linearities of the vehicle dynamics, and environmental disturbances caused by ocean currents and waves.  相似文献   

5.
The problem of controlling an autonomous underwater vehicle (AUV) in a diving maneuver is addressed. Having a simple controller which performs satisfactorily in the presence of dynamical uncertainties calls for a design using the sliding mode approach, based on a dominant linear model and bounds on the nonlinear perturbations of the dynamics. Nonadaptive and adaptive techniques are considered, leading to the design of robust controllers that can adjust to changing dynamics and operating conditions. The problem of using the observed state in the control design is addressed, leading to a sliding mode control system based on input-output signals in terms of drive-phase command and depth measurement. Numerical simulations using a full set of nonlinear equations of motion show the effectiveness of the proposed techniques  相似文献   

6.
ROV accurate path following is challenging due to system unmodeled dynamics, disturbances and navigation sensors error. The model uncertainty and disturbances are commonly treated using robust methods such as the sliding mode controller where by incorporating an integral action in the zero tracking error is also guaranteed. Practically, the ROV position data is often computed using low cost inertial measurement unit (IMU) with outputs contaminated with bias and noise. Failure of mission is an immediate consequence of employing such biased sensors. However, the problem can be circumvented using the concept of redundant measurements and data fusion. In this respect, a set of 12 measurements from IMU, magnetometer and Doppler velocity log (DVL) are employed where the last two are aided sensors. The set up is shown to be capable of providing ROV path following with zero (in average) steady state tracking error irrespective of its dynamic parameters, environmental disturbances and erroneous data; as if it enjoys the exact values of the position of the ROV. It means that the combined DVL and magnetometer are sufficient for filtering the IMU biased measurements. Various simulations conducted confirm the results.  相似文献   

7.
对于一类具有变时滞和控制器增益摄动的非线性系统,研究非脆弱保成本控制问题。在控制器参数存在加法摄动和乘法摄动2种情况下,设计1个无记忆状态反馈非脆弱保成本控制律,使闭环系统渐近稳定,并且闭环性能指标不超过某个确定的上界。利用线性矩阵不等式方法,给出时滞相关的非脆弱保成本控制律存在的条件和控制器的设计方法。  相似文献   

8.
A global trajectory tracking controller is presented for underactuated AUVs with only surge force and yaw moment in the horizontal plane. A transformation is introduced to represent the tracking error system into a cascade form. The global and uniform asymptotic stabilization problem of the resulting cascade system is reduced to the stabilization problem of two subsystems by use of the cascade approach. For the stabilization of the subsystem involving the yaw moment, a control law is proposed based on the feedback linearization method. Another subsystem is stabilized by designing a fuzzy sliding mode controller which can offer a systematical means of constructing a set of shrinking-span and dilating-span membership functions. In order to demonstrate the practicability of the proposed controller, control constraints, parameter uncertainties, and external disturbances are considered according to practical situation of AUVs. Simulation results show very good tracking performance and robustness of the proposed control schemes.  相似文献   

9.
There is increasing interest in optimizing ships for the actual operating condition rather than just for calm water. In order to optimize the propeller designs for operations in waves, it is essential to study how the propeller performance is affected by operation in waves. The effect of various factors that influence the propeller is quantified in this paper using a 8000 dwt chemical tanker equipped with twin-podded propulsion as a case vessel. Propeller performance in waves in terms of cavitation, pressure pulses, and efficiency is compared with the performance in calm water. The influence of wake variation, ship motions, RPM fluctuations and speed loss is studied. Substantial increase in cavitation and pressure pulses due to wake variation in the presence of waves is found. It is found that the effect of other factors is relatively small and easier to take into account as compared to wake variation. Therefore, considering the wake variation at least in the critical wave condition (where the wavelength is close to ship length) in addition to calm water wake is recommended in order to ensure that the optimized propeller performs well both in calm water and in waves.  相似文献   

10.
In view of environmental concerns, there is increasing demand to optimize the ships for the actual operating condition rather than for calm water. Now, in order to apply this for propeller design, a first step would be to study the effects of waves on propeller operation. Therefore, the aim of this paper is to identify and quantify the effect of various factors affecting the propeller in waves. The performance of KVLCC2 propeller in the presence of three different waves has been compared with calm water performance. Changes in performance in terms of cavitation, pressure pulses, and efficiency have been studied. Significant increase in pressure pulses has been observed due to wake change in waves even though cavitation did not show any significant change. An analysis using cavitation bucket diagram in different wave conditions indicates that a propeller optimized for calm water wake may perform much worse in the presence of waves. Therefore, having wake variation at least in critical wave conditions (where the wavelength is close to ship length) in addition to calm water wake could be very useful to ensure that the propeller performs equally well in the presence of waves.  相似文献   

11.
This paper is concerned with the robust control synthesis of autonomous underwater vehicle(AUV) for general path following maneuvers.First,we present maneuvering kinematics and vehicle dynamics in a unified framework.Based on H∞ loop-shaping procedure,the 2-DOF autopilot controller has been presented to enhance stability and path tracking.By use of model reduction,the high-order control system is reduced to one with reasonable order,and further the scaled low-order controller has been analyzed in both the frequency and the time domains.Finally,it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.  相似文献   

12.
Min-Guk Seo  Yonghwan Kim 《Ocean Engineering》2011,38(17-18):1934-1945
This paper considers a numerical analysis of ship maneuvering performance in the presence of incident waves and resultant ship motion responses. To this end, a time-domain ship motion program is developed to solve the wave–body interaction problem with the ship slip speed and rotation, and it is coupled with a modular-type 4-DOF maneuvering problem. In this coupled problem, the second-order mean drift force, which can play an important role in the ship maneuvering trajectory, is estimated by using a direct pressure integration method. The developed method is validated by observing the second-order mean drift force, and planar trajectories in maneuvering tests with and without the presence of incident waves. The comparisons are made for two ship models, Series 60 with block coefficient 0.7 and the S-175 containership, with existing experimental data. The maneuvering tests observed in this study include a zig-zag test in calm water, and turning tests in calm water and in regular waves. The present results show a fair agreement of overall tendency in maneuvering trajectories.  相似文献   

13.
研究了一类非匹配不确定离散广义系统的准滑模控制问题。给出了带有扰动补偿的离散广义趋近律,消除了常规滑模控制中不确定项必须有界的限制,且不必满足匹配条件。所设计的滑模控制在有限时间内可达切换面,减小了准滑动模态带宽,有效地削弱了系统抖振,改善了系统动态品质。数值算例验证了该方法的可行性与有效性。  相似文献   

14.
This paper addresses the trajectory tracking problem for the low-speed maneuvering of fully actuated underwater vehicles. It is organized as follows. First, a brief review of previously reported control studies and plant models is presented. Second, an experimentally validated plant model for The Johns Hopkins University Remotely Operated Underwater Vehicle (JHUROV) is reviewed. Third, the stability of linear proportional-derivative (PD) control and a family of fixed and adaptive model-based controllers is examined analytically and demonstrated with numerical simulations. Finally, we report results from experimental trials comparing the performance of these controllers over a wide range of operating conditions. The experimental results corroborate the analytical predictions that the model-based controllers outperform PD control over a wide range of operating conditions. The exactly linearizing model-based controller is outperformed by its nonexactly linearizing counterpart. The adaptive controllers are shown to provide reasonable online plant parameter estimates, as well as velocity and position tracking consistent with theoretical predictions-providing good velocity tracking and, with the appropriate parameter update law, position tracking. The effects of reference trajectory, "bad" model parameters, feedback gains, adaptation gains, and thruster saturation are experimentally evaluated. To the best of our knowledge, this is the first reported comparative experimental study of this class of model-based controllers for underwater vehicles.  相似文献   

15.
The roll damping characteristics of three models of a 3-ton class fishing vessel representing the bare hull, hull with bilge keels, and hull with bilge keels and a central wing are investigated by the free roll decay tests in calm water and also in uniform head waves in a towing tank. Speed and roll initial angle and OG (distance between the centers of gravity and roll) are varied to check their dependence on roll damping. The experimental results are compared with the numerical results of mathematical modeling by the energy method and the energy dissipation patterns are also compared for these three models. The bilge keel contributes significantly to the increment of the roll damping for zero speed but as speed increases, the lift generated by the central wing contributes significantly to the roll damping increase. In addition, it is shown that the roll damping is more or less influenced by the regular head waves.  相似文献   

16.
In the recent decades, the application and research of unmanned surface vessels are experiencing considerable growth, which have caused the demands of intelligent autopilots to grow along with the ever-growing requirements. In this study, the design of an autopilot based on Unscented Kalman Filter (UKF) trained Radial Basis Function Neural Networks (RBFNN) was presented. In particular, in order to provide satisfactory control performance for surface vessels with random external disturbances, the modified UKF was utilised as the weights training mechanism for the RBFNN based controller. The configurations of the newly developed free running scaled model, as well as the online signal processing method, were introduced to enable the experimental studies. The experimental and numerical tests were carried out through using the physical scaled model and corresponding mathematical model to validate the capability of the designed control system under various sailing conditions. The results indicated that the UKF RBFNN based autopilot satisfied the functionalities of course keeping, course changing and trajectory tracking only using the rudder as the actuator. It was concluded that the developed control scheme was effective to track the desired states and robust against unpredictable external disturbances. Moreover, in comparison with Back-Propagation (BP) RBFNN and Proportional-Derivative (PD) based autopilots, the UKF RBFNN based autopilot has the comparable capability in the aspects of providing smooth and effective control laws.  相似文献   

17.
A real time kinematic (RTK), GPS-based, track-keeping control of a small boat is discussed in this paper. The internal model control (IMC) method is adopted in the autopilot design and the controller is recast in the PID controller format that is characterized by its simple structure and relative ease of implementation. The track-keeping mission is achieved through a sequence of course-changing maneuvers and the reference heading is computed with the line-of-sight (LOS) guidance law. Path planning based on Bezier curves to achieve obstacle avoidance is investigated. First, computer simulations are carried out to find the feasible controller design parameter that achieves satisfactory simulation results. Then the feasible controller design parameter is applied in the small-boat-based experiments to demonstrate the practical use of the proposed autopilot design method.  相似文献   

18.
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water velocity can be estimated with good accuracy. In addition, the output feedback integral controller shows superior performance and robustness compared to a conventional shaft speed controller  相似文献   

19.
In this paper, a hierarchical control framework with relevant algorithms is proposed to achieve autonomous navigation for an underactuated unmanned surface vehicle (USV) swarm. In order to implement automatic target tracking, obstacle avoidance and avoid collisions between group members, the control framework is divided into three layers based on task assignments: flocking strategy design, motion planning and control input design. The flocking strategy design transmits some basic orders to swarm members. Motion planning applies the potential function method and then improves it; thus, the issue of autonomous control is transformed into one of designing the velocity vector. In the last layer, the control inputs (surge force and yaw moment) are designed using the sliding mode method, and the problem of underactuation is handled synchronously. The proposed closed-loop controller is shown to be semi-asymptotically stable by applying Lyapunov stability theory, and the effectiveness of the proposed methodology is demonstrated via numeric simulations of a homogeneous USV swarm.  相似文献   

20.
This paper proposes a saturated tracking controller for underactuated autonomous marine surface vehicles with limited torque. First, a second-order open-loop error dynamic model is developed in the actuated degrees of freedom to simplify the design procedure. Then, a saturated tracking controller is designed by utilizing generalized saturation functions to reduce the risk of actuator saturation. This, in turn, improves the transient performance of the control system. A multi-layer neural network and adaptive robust control techniques are also employed to preserve the controller robustness against unmodeled dynamics and environmental disturbances induced by waves and ocean currents. A Lyapunov stability analysis shows that all signals of the closed-loop system are bounded and tracking errors are semi-globally uniformly ultimately bounded. Finally, simulation results are provided for a hovercraft vehicle to illustrate the effectiveness of the proposed controller as a qualified candidate for real implementations in offshore applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号