首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes an investigation on runoff generation at different scales in the forested catchment of the Sperbelgraben in the Emmental region (Swiss Prealps) where studies in the field of forest hydrology have a history of 100 years. It focuses on the analysis of soil profiles and the subsequent sprinkling experiments above them (1 m2), as well as on surface runoff measurements on larger plots (50 to 110 m2). In the Sperbelgraben investigation area, two very distinct runoff reactions could be observed. On the one hand, very high production of saturation overland flow was registered on wet areas of gleyic soils, with runoff coefficients between 0·39 and 0·94 for profile irrigation. On the other hand, almost no surface runoff was measured on Cambisols, with the exception at some sites of a hydrophobic reaction detected at the beginning of storms after dry periods (coefficients for profile irrigation: 0·01–0·16). This pattern was observed during 1 m2 soil plot irrigation and on surface runoff plots. Apart from a less distinctive signal of the water‐repellent litter layer on the larger surface runoff plots, the dominant hydrological processes at the two scales are the same. The determined runoff reaction at the two scales corresponds well with information from a forest site type map describing soil and vegetation characteristics and used as a substitute for a soil map in this study. Theoretical considerations describing forest influence on flood discharge are discussed and evaluated to be in good agreement with observations. These findings are a sound foundation for application in hydrological catchment modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The impact of global climate change on runoff components, especially on the type of overland flow, is of utmost significance. High‐resolution temporal rainfall plays an important role in determining the hydrological response of quick runoff components. However, hydrological climate change scenario analyses with high temporal resolution are rare. This study investigates the impact of climate change on discharge peak events generated by rainfall, snowmelt, and soil‐frost induced runoff using high‐resolution hydrological modelling. The study area is Schäfertal catchment (1.44 km2) in the lower Harz Mountains in central Germany. The WaSiM‐ETH hydrological model is used to investigate the rainfall response of runoff components under near future (2021–2050) and far‐distant future (2071–2100) climatic conditions. Disaggregated daily climate variables of WETTREG2010 SRES scenario A1B are used on a temporal resolution of 10 min. Hydrological model parameter optimization and uncertainty analysis was conducted using the Differential Evolution Adaptive Metropolis (DREAM_(ZS)) uncertainty tool. The scenario results show that total runoff and interflow will increase by 3.8% and 3.5% in the near future and decrease by 32.85% and 31% in the far‐distant future compared to the baseline scenario. In contrast, overland flow and the number and size of peak runoff will decrease moderately for the near future and drastically for the far‐distant future compared to the baseline scenario. We found the strongest decrease for soil‐frost induced discharge peaks at 79.6% in the near future and at 98.2% in the far‐distant future scenario. It can be concluded that high‐resolution hydrological modelling can provide detailed predictions of future hydrological regimes and discharge peak events of the catchment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Water budget analyses are important for the evaluation of the water resources in semiarid and arid regions. The lack of observed data is the major obstacle for hydrological modelling in arid regions. The aim of this study is the analysis and calculation of the natural water resources of the Western Dead Sea subsurface catchment, one which is highly sensitive to rainfall resulting in highly variable temporal and spatial groundwater recharge. We focus on the subsurface catchment and subsequently apply the findings to a large‐scale groundwater flow model to estimate the groundwater discharge to the Dead Sea. We apply a semidistributed hydrological model (J2000g), originally developed for the Mediterranean, to the hyperarid region of the Western Dead Sea catchment, where runoff data and meteorological records are sparsely available. The challenge is to simulate the water budget, where the localized nature of extreme rainstorms together with sparse runoff data results in few observed runoff and recharge events. To overcome the scarcity of climate input data, we enhance the database with mean monthly rainfall data. The rainfall data of 2 satellites are shown to be unsuitable to fill the missing rainfall data due to underrepresentation of the steep hydrological gradient and temporal resolution. Hydrological models need to be calibrated against measured values; hence, the absence of adequate data can be problematic. Therefore, our calibration approach is based on a nested strategy of diverse observations. We calculate a direct surface runoff of the Western Dead Sea surface area (1,801 km2) of 3.4 mm/a and an average recharge (36.7 mm/a) for the 3,816 km2 subsurface drainage basin of the Cretaceous aquifer system.  相似文献   

4.
Under the influence of all kinds of human activities, runoff decreased significantly in most river basins in China over the past decades. Assessing the effect of specific human activities on runoff is essential not only for understanding the mechanism of hydrological response in the catchment, but also for local water resources management. The Kuye River, the first-order tributary of the middle Yellow River, has experienced significant runoff declines. The coal resources are rich in the Kuye River Basin. In mined out area some cranny changed the hydrogeological conditions of the mining area and the hydrological process of the basin. In this study, the time series of runoff was divided into three periods at two critical years of 1979 and 1999 by precipitation–runoff double accumulation curve. The Yellow River Water Balance Model (YRWBM) is calibrated and verified to a baseline period in 1955–1978. Subsequently, natural runoff for human-induced period (1979 to 1998) and strongly human-induced period (1999 to 2010) is reconstructed using the YRWBM model. The YRWBM model performed well in simulating monthly discharges in the catchment, both Nash Sutcliffe coefficients in calibration and verification were above 70%, while relative errors in both periods were at less than 5%. The percentage of runoff reduction attributing to human activities was from 39.44% in 1979–1998 to 56.50% in 1999–2010. Further the influence of coal mining on river runoff was assessed quantitatively by YRWBM model simulation. The influence of coal mining on runoff reduction was 29.69 mm in 1999–2010 which was about 2.58 × 108 m3/a. It accounted for 71.13% of the runoff reduction during this period. Coal mining became a dominant factor causing the runoff reduction.  相似文献   

5.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

6.
Abstract

The glaciers in the Nepalese Himalayas are retreating due to rising temperatures. Lack of data and information on Nepal’s cryosphere has impeded scientific studies and field investigations in the Nepalese Himalayas. Therefore, IRD France and Ev-K2 CNR Italy have conducted the PAPRIKA (CryosPheric responses to Anthropogenic PRessures in the HIndu Kush-Himalaya regions: impacts on water resources and society adaptation in Nepal) project in Nepal with the financial support of the French and Italian scientific agencies. This project aims to address the current and future evolution of the cryosphere in response to overall environmental changes in South Asia, and its consequences for water resources in Nepal. Thus, two hydrological models, the GR4J lumped precipitation–runoff model and the snowmelt runoff model (SRM), were used in the Dudh Koshi basin. The GR4J model has been successfully applied in different parts of Europe. To obtain better results in such a harsh and rugged topography, modifications needed to be made, particularly in the snow module. The runoff pattern is analysed herein both for past years and, in a sensitivity analysis, for possible future climatic conditions (i.e. precipitation and temperature) using the SRM and GR4J modelling approaches. The results reveal a significant contribution of snow- and glacier-melt to runoff, and the SRM model shows better performance in Nepalese catchments than the GR4J model.
Editor D. Koutsoyiannis; Associate editor D. Gerten  相似文献   

7.
Changes in climate and urban growth are the most influential factors affecting hydrological characteristics in urban and extra‐urban contexts. The assessment of the impacts of these changes on the extreme rainfall–runoff events may have important implications on urban and extra‐urban management policies against severe events, such as floods, and on the design of hydraulic infrastructures. Understanding the effects of the interaction between climate change and urban growth on the generation of runoff extremes is the main aim of this paper. We carried out a synthetic experiment on a river catchment of 64 km2 to generate hourly runoff time series under different hypothetical scenarios. We imposed a growth of the percentage of urban coverage within the basin (from 1.5% to 25%), a rise in mean temperature of 2.6 °C, and an alternatively increase/decrease in mean annual precipitation of 25%; changes in mean annual precipitation were imposed following different schemes, either changing rainstorm frequency or rainstorm intensity. The modelling framework consists of a physically based distributed hydrological model, which simulates fast and slow mechanisms of runoff generation directly connected with the impervious areas, a land‐use change model, and a weather generator. The results indicate that the peaks over threshold and the hourly annual peaks, used as hydrological indicators, are very sensitive to the rainstorm intensity. Moreover, the effects of climate changes dominate on those of urban growth determining an exacerbation of the fast runoff component in extreme events and a reduction of the slow and deep runoff component, thus limiting changes in the overall runoff.  相似文献   

8.
Geochemically based hydrograph separation techniques were used in a preliminary assessment to infer how runoff processes change with landscape characteristics and spatial scale (1–233 km2) within a mesoscale catchment in upland Scotland. A two‐component end‐member mixing analysis (EMMA) used Gran alkalinity as an assumed conservative tracer. Analysis indicated that, at all scales investigated, acidic overland flow and shallow subsurface storm flows from the peaty soils covering the catchment headwaters dominated storm runoff generation. The estimated groundwater contribution to annual runoff varied from 30% in the smallest (ca 1 km2) peat‐dominated headwater catchment with limited groundwater storage, to >60% in larger catchments (>30 km2) with greater coverage of more freely draining soils and more extensive aquifers in alluvium and other drift. This simple approach offers a useful, integrated conceptualization of the hydrological functioning in a mesoscale catchment, which can be tested and further refined by focused modelling and process‐based research. However, even as it stands, the simple conceptualization of system behaviour will have significant utility as a tool for communicating hydrological issues in a range of planning and management decisions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The hydrological response of a small agroforestry catchment in northwest Spain (Corbeira catchment, 16 km2) is analysed, with particular focus on rainfall events. Fifty-four rainfall–runoff events, from December 2004 to September 2007, were used to analyse the principal hydrological patterns and show which factors best explain the hydrological response. The nonlinearity between rainfall and runoff showed that the variability in the hydrological response of the catchment was linked to the seasonal dynamics of the rainfall and, to a lesser extent, to evapotranspiration. The runoff coefficient, estimated as the ratio between direct runoff and rainfall volume, on an event basis, was analysed as a function of rainfall characteristics (amount and intensity) and the initial catchment state conditions prior to an event, such as pre-event baseflow and antecedent rainfall index. The results revealed that the hydrological response depends both on the soil humidity conditions at the start of the event and on rainfall amount, whereas rainfall intensity presented only a significant correlation with discharge increment. The antecedent conditions seem to be a key point in runoff production, and they explain much of the response. The hydrographs are characterized by a steep rising limb, a relatively narrow peak discharge and slow recession limb. These data and the observations suggest that the subsurface flow is the dominant runoff process.

Editor Z.W. Kundzewicz; Associate editor T. Wagener

Citation Rodríguez-Blanco, M.L., Taboada-Castro, M.M. and Taboada-Castro, M.T., 2012. Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrological Sciences Journal, 57 (3), 445–459.  相似文献   

10.
11.
12.
Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to <1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.  相似文献   

13.
We apply the process‐based, distributed TOPKAPI‐ETH glacio‐hydrological model to a glacierized catchment (19% glacierized) in the semiarid Andes of central Chile. The semiarid Andes provides vital freshwater resources to valleys in Chile and Argentina, but only few glacio‐hydrological modelling studies have been conducted, and its dominant hydrological processes remain poorly understood. The catchment contains two debris‐free glaciers reaching down to 3900 m asl (Bello and Yeso glaciers) and one debris‐covered avalanche‐fed glacier reaching to 3200 m asl (Piramide Glacier). Our main objective is to compare the mass balance and runoff contributions of both glacier types under current climatic conditions. We use a unique dataset of field measurements collected over two ablation seasons combined with the distributed TOPKAPI‐ETH model that includes physically oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution and the ablation of debris‐covered ice. Model outputs indicate that while the mass balance of Bello and Yeso glaciers is mostly explained by temperature gradients, the Piramide Glacier mass balance is governed by debris thickness and avalanches and has a clear non‐linear profile with elevation as a result. Despite the thermal insulation effect of the debris cover, the mass balance and contribution to runoff from debris‐free and debris‐covered glaciers are similar in magnitude, mainly because of elevation differences. However, runoff contributions are distinct in time and seasonality with ice melt starting approximately four weeks earlier from the debris‐covered glacier, what is of relevance for water resources management. At the catchment scale, snowmelt is the dominant contributor to runoff during both years. However, during the driest year of our simulations, ice melt contributes 42 ± 8% and 67 ± 6% of the annual and summer runoff, respectively. Sensitivity analyses show that runoff is most sensitive to temperature and precipitation gradients, melt factors and debris cover thickness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The Brixenbach valley is a small Alpine torrent catchment (9.2 km2, 820–1950 m a.s.l., 47.45°, 12.26°) in Tyrol, Austria. Intensive hydrological research in the catchment since more than 12 years, including a hydrogeological survey, pedological and land use mapping, measurements of precipitation, runoff, soil moisture and infiltration as well as the conduction of rainfall simulations, has contributed to understand the hydrological response of the catchment, its subcatchments and specific sites. The paper presents a synthesis of the research in form of runoff process maps for different soil moisture states and precipitation characteristics, derived with the aid of a newly developed Soil-hydrological model. These maps clearly visualize the differing runoff reaction of different subcatchments. The pasture dominated areas produce high surface flow rates during short precipitation events (1 h, 86 mm) with high rainfall intensity, whilst the forested areas often develop shallow subsurface flow. Dry preconditions lead to a slight reduction of surface flow, long rainfall events (24 h, 170 mm) to a dominance of deep subsurface flow and percolation.  相似文献   

15.
To increase the resilience of regional water supply systems in South Africa in the face of anticipated climatic changes and a constant increase in water demand, water supply sources require diversification. Many water-stressed metropolitan regions in South Africa depend largely on surface water to cover their water demand. While climatic and river discharge data is widely available in these regions, information on groundwater resources – which could support supply source diversification – is scarce. Groundwater recharge is a key parameter that is used to estimate groundwater amounts that can be sustainably exploited at a sub-watershed level. Therefore, the objective of this study was to develop a reliable hydrological modelling routine that enables the assessment of regional spatio-temporal variations of groundwater recharge to discern the most promising areas for groundwater development. Accordingly, we present a semi-distributed hydrological modelling approach that incorporates water balance routines coupled with baseflow modelling techniques to yield spatio-temporal variations of groundwater recharge on a regional level. The approach is demonstrated for the actively managed catchment areas of the Amathole Water Supply System situated in a semi-arid part of the Eastern Cape of South Africa. In the investigated study area, annual groundwater recharge exhibits a high spatio-temporal heterogeneity and is estimated to vary between ~0.5% and 8% of annual rainfall. Despite some uncertainties induced by limited data availability, calibration and validation of the model were found to be satisfactory and yielded model results similar to (point) data of annual groundwater recharge reported in earlier studies. Our approach is therefore found to derive crucial information for efficiently targeting more detailed groundwater exploration studies and could work as a blueprint for orientating groundwater potential exploration in similar environments.  相似文献   

16.
Abstract

Hydrological models are commonly used to perform real-time runoff forecasting for flood warning. Their application requires catchment characteristics and precipitation series that are not always available. An alternative approach is nonparametric modelling based only on runoff series. However, the following questions arise: Can nonparametric models show reliable forecasting? Can they perform as reliably as hydrological models? We performed probabilistic forecasting one, two and three hours ahead for a runoff series, with the aim of ascribing a probability density function to predicted discharge using time series analysis based on stochastic dynamics theory. The derived dynamic terms were compared to a hydrological model, LARSIM. Our procedure was able to forecast within 95% confidence interval 1-, 2- and 3-h ahead discharge probability functions with about 1.40 m3/s of range and relative errors (%) in the range [–30; 30]. The LARSIM model and the best nonparametric approaches gave similar results, but the range of relative errors was larger for the nonparametric approaches.

Editor D. Koutsoyiannis; Associate editor K. Hamed

Citation Costa, A.C., Bronstert, A. and Kneis, D., 2012. Probabilistic flood forecasting for a mountainous headwater catchment using a nonparametric stochastic dynamic approach. Hydrological Sciences Journal, 57 (1), 10–25.  相似文献   

17.
Small catchments have served as sentinels of forest ecosystem responses to changes in air quality and climate. The Hubbard Brook Experimental Forest in New Hampshire has been tracking catchment water budgets and their controls – meteorology and vegetation – since 1956. Water budgets in four reference catchments indicated an approximately 30% increase in the evapotranspiration (ET) as estimated by the difference between precipitation (P) and runoff (RO) starting in 2010 and continuing through 2019. We analyzed the annual water budgets, cumulative deviations of the daily P, RO and water budget residual (WBR = P − RO), potential ET (PET) and indicators of subsurface storage to gain greater insight into this shift in the water budgets. The PET and the subsurface storage indicators suggest that this change in WBR was primarily due to increasing ET. While multiple long-term hydrological and micrometeorological data sets were used to detect and investigate this change in ET, additional measurements of groundwater storage and soil moisture would enable better estimation of ET within the catchment water balance. Increasing the breadth of long-term measurements across small gauged catchments allows them to serve as more effective sentinels of substantial hydrologic changes like the ET increase that we observed.  相似文献   

18.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

A flow-interval hillslope discretization scheme is proposed for catchment hydrological modelling. By this scheme, a two-dimensional catchment is simplified into a one-dimensional cascade of flow intervals linked by the main stream. Each flow interval comprises a set of parallel hillslopes. The hillslope is the fundamental computational unit in the hydrological model providing lateral inflow to the main stream. The size of hillslope is determined by the catchment area and width functions. Catchment runoff is the total of hillslope responses through the river routing. Tests in four Japanese catchments showed that the model performed well on simulating the overall water balance, general flow pattern, and daily and hourly hydrographs of a whole catchment, as well as simultaneous simulation in different subcatchments. Characteristics of catchment hydrological responses and model applicability are discussed.  相似文献   

20.
Carbon storage values in the Amazon basin have been studied through different approaches in the last decades in order to clarify whether the rainforest ecosystem is likely to act as a sink or source for carbon in the near future. This water balance, dissolved organic carbon (DOC) and nutrient export study were carried out in a micro‐scale heath forest (Campina) catchment in central Amazonia, Brazil. For a 1‐year study period (18 March 2007 until 19 March 2008), rainfall amounted to 3054 mm; of which, 1532 mm was evaporated by the forest (4.1 mm day?1). Rainfall interception loss amounted to 15.6% of gross rainfall. Surface runoff amounted to 485 mm, whereas another 1071 mm was discharged as regional groundwater outflow. Accumulated DOC exports in surface runoff amounted to 15.3 g m?2 year?1, whereas the total carbon exported was 55.9 g m?2. This is much higher than that observed for a nearby tall rainforest catchment in central Amazonia (DOC export < 20 g m?2). As Campina heath forest areas cover a significant proportion of the Amazon Basin, these differences in ecosystem hydrological carbon exports should be taken into account in future studies assessing the carbon budget for the Amazon Basin. Macro‐nutrient exports were low, but those of calcium and potassium were higher than those observed for tall rainforest in the Amazon, which may be caused by a lower retention capacity of the heath forest ecosystem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号