首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
上二叠统记录了地质历史时期最大规模的生物灭绝事件和最深刻的环境变化。对上二叠统的层序地层格架进行精细 描绘,建立高分辨率的地层序列,是深入了解此次事件及其演化的基础和关键。基于钻测井、岩心观测及地球化学分析测 试结果等资料综合分析,并运用小波分析技术,对黔西盘县上二叠统煤系进行了米氏旋回的识别和划分,结果表明,研究 区上二叠统煤系记录了稳定的米兰科维奇旋回,天文轨道周期对其沉积过程具有明显影响,由长、短偏心率、地轴斜率和 岁差周期引起的地层旋回厚度分别为16.06~17.24 m、5.39~5.70 m、2.11~2.15 m、1.12~1.21 m,长偏心率周期对地层中沉积 旋回的控制和影响最强。对长、短偏心率周期进行滤波分析后,建立了上二叠统煤系“浮动”天文年代标尺,为约束同沉 积火山事件层(Tonstein) 的形成及其持续时限提供了年代学依据。以区域等时对比效果明显的长偏心率旋回为标尺,并结 合旋回沉积序列、旋回界面特征等,将上二叠统煤系划分为4个三级层序,并进一步划分为16个四级层序(对应于中期旋 回),建立了研究区高频层序地层格架。  相似文献   

2.
上二叠统记录了地质历史时期最大规模的生物灭绝事件和最深刻的环境变化。对上二叠统的层序地层格架进行精细 描绘,建立高分辨率的地层序列,是深入了解此次事件及其演化的基础和关键。基于钻测井、岩心观测及地球化学分析测 试结果等资料综合分析,并运用小波分析技术,对黔西盘县上二叠统煤系进行了米氏旋回的识别和划分,结果表明,研究 区上二叠统煤系记录了稳定的米兰科维奇旋回,天文轨道周期对其沉积过程具有明显影响,由长、短偏心率、地轴斜率和 岁差周期引起的地层旋回厚度分别为16.06~17.24 m、5.39~5.70 m、2.11~2.15 m、1.12~1.21 m,长偏心率周期对地层中沉积 旋回的控制和影响最强。对长、短偏心率周期进行滤波分析后,建立了上二叠统煤系“浮动”天文年代标尺,为约束同沉 积火山事件层(Tonstein) 的形成及其持续时限提供了年代学依据。以区域等时对比效果明显的长偏心率旋回为标尺,并结 合旋回沉积序列、旋回界面特征等,将上二叠统煤系划分为4个三级层序,并进一步划分为16个四级层序(对应于中期旋 回),建立了研究区高频层序地层格架。  相似文献   

3.
The Mesoproterozoic Wumishan Formation in the Jixian section of Tianjin is a succession of 3300-m-thick carbonate strata formed in a period of about 100 Ma (1310±20 Ma-1207±10 Ma). In this succession of strata, the carbonate metre-scale cyclic sequences belonging to peritidal type with an approximately symmetrical lithofacies-succession are best developed. The wide development of 1:4 stacking patterns shows that these metre-scale cyclic sequences are genetically related to the short-eccentricity cycles, which are called the Wumishan cyclothems that could truly represent sedimentary cycles. Generally, massive and thick-bedded calcareous dolomites and dolomitic limestones of stromatolite biostromes and thrombolite bioherms constitute the central part of the Wumishan cyclothems. The lower and upper parts consist of tidal flat dolostones, sandy-muddy dolostone and the top part is composed of lagoonal facies dolomitic shales with a paleosol cap. Therefore, an approximately symmetrical lithofacies-successio  相似文献   

4.
Four hierarchical cyclothems, superbundlesets, bundlesets, bundles and laminae, have been identified from the Devonian Frasnian-Famennian carbonate strata in Guangxi, South China. Their hierarchical structures, ratio relationships and sequence in conodont zones are continuous and stable and can be traced across different facies zones and sedimentary basins. Our data show that hierarchically organized superbundlesets, bundlesets, bundles and laminae correspond to the long eccentricity, eccentricity, obliquity or precession and sub-Milankovitch cycles respectively. Their periods were 400,000, 100,000, 33,333, 16,667 and 8,000-17,000 a, respectively. The ratios of long eccentricity to eccentricity, eccentricity to obliquity, and eccentricity to precession in the Devonian are 1:4, 1:3 and 1:6 respectively. Using these hierarchical Milankovitch cyclothems, chronostratigraphical division and correlation can be realized at a resolution of 100 ka or 10 ka at the Frasnian-Famennian transition. The time intervals  相似文献   

5.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

6.
Lake sedimentary records that allow documentation of the distinct climatic and environmental shifts during the early part of the Last Termination are scarce for northern Europe. This multi‐proxy study of the sediments of Atteköpsmosse, southwest Sweden, therefore fills an important gap and provides detailed information regarding past hydroclimatic conditions and local environmental responses to climatic shifts. Lake infilling started c. 15.5 cal. ka BP, but low aquatic productivity, cold summer lake water temperatures, unstable catchments, and scarce herb and shrub vegetation prevailed until c. 14.7–14.5 cal. ka BP. Inflow of warmer air masses and higher July air temperatures favoured a rise in aquatic productivity and lake water summer temperatures, and the establishment of a diverse herb, shrub and dwarf shrub vegetation, which also included tree birch c. 14.5 cal. ka BP. Freshening of the moisture source region c. 13.7–13.6 cal. ka BP does not seem to have had a large impact on the ancient lake and its catchment, as lake aquatic productivity increased further and lake water summer temperatures and minimum mean July air temperatures remained around 12–14 °C. In contrast, further freshening of the moisture source region c. 13 cal. ka BP triggered a decrease in lake productivity, drier conditions and lower lake water summer temperatures. Macroscopic finds of tree Betula and Pinus sylvestris at 13–12.8 cal. ka BP demonstrate the presence of these trees in the lake's catchment. The transition into the Holocene (11.6–11.5 cal. ka BP) is marked by a change in chironomid assemblages and by a rise in lake water summer temperatures and aquatic productivity. These changes were followed by the re‐establishment of a diverse aquatic and terrestrial vegetation, including tree birch and Pinus sylvestris at 11.4 cal. ka BP.  相似文献   

7.
Lake Ladoga in northwestern Russia is Europe's largest lake. The postglacial history of the Ladoga basin is for the first time documented continuously with high temporal resolution in the upper 13.3 m of a sediment core (Co1309) from the northwestern part of the lake. We applied a multiproxy approach including radiographic imaging, (bio‐)geochemical and granulometric analyses. Age control was established combining radiocarbon dating with varve chronology, the latter anchored to a correlated radiocarbon age from a lake close by. The age‐depth model reveals the onset of glacial varve sedimentation at 13 910±140 cal. a BP, when Lake Ladoga was part of the Baltic Ice Lake. Linear extrapolation of published retreat rates of the Scandinavian Ice Sheet provides a formation age of the Luga moraine close to Lake Ladoga's southern shore of 14.5–15.9 cal. ka BP, older than previously assumed. Varve sedimentation covers the Bølling/Allerød interstadial, the Younger Dryas stadial and the Early Holocene. Varve‐thickness variations, conjoined with grain‐size and geochemical variations, inform about the relative position of the Scandinavian Ice Sheet and the climate during the deglaciation phase. The upper limit of the varved succession marks the change from glaciolacustrine to normal lacustrine sedimentation and post‐dates the drainage of the Baltic Ice Lake as well as the formation of the Salpausselkä II moraine north of Lake Ladoga, by c. 250 years. The Holocene sediment record is divided into three periods in the following order: (i) a lower transition zone between the Holocene boundary and c. 9.5 cal. ka BP, characterized by mostly massive sediments with low organic content, (ii) a phase with increased organic content from c. 9.5 to 4.5 cal. ka BP corresponding to the Holocene Thermal Maximum, and (iii) a phase with relatively stable sedimentation in a lacustrine environment from c. 4.5 cal. ka BP until present.  相似文献   

8.
The imprint of orbital cycles, which result from the varying eccentricity of the Earth’s orbit and changes in the orientation of its axis, have been recognised throughout the Phanerozoic rock record. Variations in insolation and their effect on climate are generally considered to be the sole transfer mechanism between the orbital variables and cyclic sedimentary successions. Common oceanographic principles, however, show that the ocean tide also responds to variations in the orbital parameters. The ocean tide has not yet been considered to be a valid, additional transfer mechanism for the orbital variations. In geological studies of Milankovitch cycles in sedimentary successions the insolation paradigm offers satisfying explanations, and the role of long‐term variations of the ocean tide has not yet been appreciated. Variations in the ocean tide, related to changing eccentricity (at present 0·0165, theoretical maximum 0·0728), affect a variety of oceanographic and sedimentary processes. In addition to the widely accepted paradigm of orbitally forced insolation changes, the tidal transfer of orbital signals may explain certain less well‐understood aspects of orbitally induced cycles in the stratigraphic record related to ocean mixing, organic productivity, and tidal processes in shallow seas and deep water. Variations of the ocean tide in relation to the 18·6 year lunar nodal cycle, which has no insolation counterpart by which they may be obscured, indeed show that these relatively small variations can produce significant effects in sedimentary environments that are sensitive to variations in the strength of the ocean tide. In analogy with the 18·6 year lunar nodal cycle, orbital variations of the tide on Milankovitch time scales are likely to have affected sedimentary systems in the past.  相似文献   

9.
The lowermost Cretaceous (Berriasian) Sierra del Pozo Formation is divisible into metre‐scale cycles that are bundled in a four‐tiered hierarchy of cycles and cyclic sequences. At the smallest scale, sixth‐order cycles, thought to be the product of precessionally forced sea‐level fluctuations (c. 20 ka), average less than a metre in thickness, shallow upward and are bounded by surfaces where deeper facies abruptly overlie shallower facies. Bundles of sixth‐order cycles, called fifth‐order sequences, are recognized by two types of asymmetric patterns in facies distribution. First, more pronounced facies changes occur at sixth‐order cycle boundaries lower in a sequence, whereas smaller facies changes occur at cycle boundaries higher in a sequence. Secondly, subtidal marine limestones (i.e. biomicrites and biosparites) are the dominant facies lower in a cyclic sequence, whereas more restricted or shallower water facies (i.e. mud‐cracked microbial laminites, dolomites, shale and clay) are more predominant higher in a cyclic sequence. The bundling of sixth‐order cycles is explained as a product of periodic change (100 ka) in the eccentricity of the earth's orbit. The degree of orbital eccentricity modulates the magnitude of precessional sea‐level fluctuations, which in turn determine the relative facies contrasts at sixth‐order cycle boundaries. Larger scale fourth‐ and third‐order sequences are defined by similar patterns in facies contrast at successive sequence boundaries and by a change in predominant facies type from bottom to top. These patterns are explained as the product of 400 ka and 2 Ma periodic variations in the eccentricity of the earth's orbit. In summary, the strength of the precessional signal varies in consort with periodic changes in orbital eccentricity at three time scales producing a stacked hierarchy of cycles and sequences of cycles. Change in obliquity of the earth's axis may modulate the effects of the precessional signal and thereby modify patterns of preserved cyclic structure. This interpretation of cyclicity in the Sierra del Pozo section is markedly different from that of Jiménez de Cisneros & Vera (1993), who attributed all rock cycles to a single process (obliquity) even though the cycles they described varied in thickness from less than 1 m to more than 4 m. The cycles they described are shown here to be either precessional cycles or composite sets of precessional cycles (100 ka sequences). In this new hierarchical interpretation, ninety‐six 100 ka and twenty‐four 400 ka sequences are recognized, extending the time of deposition of the Sierra del Pozo section to more than 9·6 Ma.  相似文献   

10.
Expansion of fresh and sea‐ice loaded surface waters from the Arctic Ocean into the sub‐polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid‐ to late Holocene fresh and sea‐ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water‐mass composition (upper ˜200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water‐mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid‐Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub‐polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and a warming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea‐ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium.  相似文献   

11.
From the synthesis of the malacological data collected from 12 sites in the large flood‐plain of the Seine basin, three main environmental stages have been reconstructed. During the first half of the Holocene, forest environments are prevalent (Seine 1). As early as c. 6.5 cal. ka BP, the first evidence of woodland clearance is observed (Seine 2) and, from c. 3.4 cal. ka BP, the lowlands were largely cleared of trees and are dominated by grassland (Seine 3). This three‐stage development of environmental conditions is consistent with the environmental developments reconstructed from molluscan successions in England, Germany, Luxembourg, Switzerland, Poland, the Czech Republic and Slovakia. Our results highlight anthropogenic disturbance as the key factor in the openness of the Holocene landscape and pinpoint the period between c. 3.6 and c. 2.8 cal. ka BP as a transitional phase of this large‐scale environmental change.  相似文献   

12.
Lake Ladoga hosts preglacial sediments, although the Eurasian ice sheet overrode the area during the LGM. These sediments were first discovered by a seismic survey and are investigated using a 22.75‐m‐long core. Its upper 13.30 m comprise Holocene and Lateglacial sediments separated from the lower 11.45 m of preglacial sediments by a hiatus. They consist of highly terrigenous lacustrine sediments, which according to OSL dating, were deposited during an early stage of the last ice age (MIS 5). The palynological data allow a first reconstruction of the Early Weichselian environmental history for northwestern Russia. Birch and alder forests with broad‐leaved taxa dominated during MIS 5d (c. 118–113 ka), suggesting a climate more favourable than in the Holocene. A high content of well‐sorted sands and poorly preserved palynomorphs indicates a shallow‐water environment at least temporarily. More fine‐grained sediments and better preserved organic remains suggest deeper water environments at the core location during MIS 5c (c. 113–88 ka). Pine and spruce became dominant, while broad‐leaved taxa started to disappear, especially after c. 90 ka, pointing to a gradual climate cooling. An increase in open herb‐dominated habitats at the beginning of MIS 5b (c. 88–86 ka) reflects a colder and dryer climate. However, later (c. 86–82 ka) pine and spruce again became more common. Birch and alder forests dominated in the area c. 82–80 ka (beginning of MIS 5a). Although open treeless habitats also became more common at this time, a slight increase in hazel may point to somewhat warmer climate conditions coinciding with the beginning of MIS 5a. The studied sediments also contain numerous remains of freshwater algae and cysts of marine and brackish‐water dinoflagellates and acritarchs documenting that the present lake basin was part of a brackish‐water basin during the Early Weichselian, probably as a gulf of the Pre‐Baltic Sea.  相似文献   

13.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

14.
The Latest Danian Event (LDE, c. 62.1 Ma) is an early Palaeogene hyperthermal or transient (<200 ka) ocean warming event. We present the first deep‐sea benthic foraminiferal faunal record to study deep‐sea biotic changes together with new benthic (Nuttallides truempyi) stable isotope data from Walvis Ridge Site 1262 (Atlantic Ocean) to evaluate whether the LDE was controlled by similar processes as the minor early Eocene hyperthermals. The spacing of the double negative δ13C and δ18O excursion and the slope of the δ18O–δ13C regression are comparable, strongly suggesting a similar orbital control and pacing of eccentricity maxima as well as a rather homogeneous carbon pool. However, in contrast to early Eocene hyperthermals, the LDE exhibits a remarkable stability of the benthic foraminiferal fauna. This lack of benthic response could be related to the absence of threshold‐related circulation changes or better pre‐adaptation to elevated deep‐sea temperatures, as the LDE was superimposed on a cooling trend, in contrast to early Eocene warming.  相似文献   

15.
针对应用常规方法进行高频层序划分和对比容易受人为因素影响,所建立的高级别层序地层格架具有多解性等问题,本文引入天文地层学中气候旋回受天文周期驱动的理论,选择涠西南凹陷WZ11-4N油田4口钻井中的流一段地层为研究对象,进行米兰科维奇旋回特征分析。对自然伽马数据进行频谱分析的结果显示,在不同钻井中,流一段地层主要受偏心率周期(401ka、125 ka和95 ka)控制。对该周期滤波分析后,选择控制流一段发育的主要米兰科维奇周期曲线,建立了该区的高分辨率天文年代标尺。最后以偏心率125 ka周期曲线作为6级层序划分的参考曲线,对流一段层序进行高频旋回地层划分与对比。在此基础上,最终实现高频地层格架下沉积相的精细对比。  相似文献   

16.
The Hanjiang Formation of Langhian age(middle Miocene) in the Pearl River Mouth Basin (PRMB),South China Sea consists of deltaic siliciclastic and neritic shelf carbonate rhythmic alternations,which form one of the potential reservoirs of the basin.To improve stratigraphic resolutions for hydrocarbon prospecting and exploration in the basin,the present study undertakes spectral analysis of high-resolution natural gamma-ray(NCR) well-logging record to determine the dominant frequency components and test whether Milankovitch orbital signals are recorded in rhythmic successions.Analytical results indicate the orbital cycles of precession(~19 ka and~23 ka), obliquity(~41 ka),and eccentricity(~100 ka and~405 ka),which provide the strong evidence for astronomically driven climate changes in the rhythmic alternation successions.Within biochronological constraint,a high-resolution astronomical timescale was constructed through the astronomical tuning of the NGR record to recent astronomically calculated variation of Earth’s orbit. The astronomically tuned timescale can be applied to calculate astronomical ages for the geological events and bioevents recognized throughout the period.The first downhole occurrences of foraminifers Globorotalia peripheroronda and Globigerinoides sicanus are dated at 14.546 Ma and 14.919 Ma,respectively,which are slightly different from earlier estimates in the South China Sea. When compared with the global sea-level change chart,the astronomical estimate for the sequences recognized based on microfossil distributions have the same end time but the different initiation time. This is probably due to the local or regional tectonic activities superimposed on eustatic rise which postponed the effect of global sea-level rising.Astronomical timescale also resolves the depositional evolution history for the Langhian Stage(middle Miocene) with a variation that strongly resembles that of Earth’s orbital eccentricity predicted from 13.65 Ma to 15.97 Ma.We infer that the main factor controlling the variability of the sedimentation rate in the Hanjiang Formation is related to the~405-ka-period eccentricity.  相似文献   

17.
A sudden release of large volumes of water during a glacier outburst flood (GLOF) is a major hazard worldwide. Here, we identify the sedimentary signature of glacial and non‐glacial processes, including GLOFs, based on lacustrine sediments from the distal glacier‐fed Lake Buarvatnet in western Norway. Historically documented GLOFs in 2002 CE and during the 1980s CE are identified in the 210Pb‐ and 14C‐dated sediments. These events have the same sedimentary signature as 12 earlier events throughout the Holocene interpreted to represent previous GLOFs in the catchment. The GLOFs are interpreted to have occurred during periods when the glacier extent was similar to the modern positions, and the events are thus used to pinpoint past positions of the glacier terminus and, hence, the equilibrium line altitudes (ELAs). The results indicate that the glacier Svartenutbreen, located at the eastern part of Folgefonna, had a similar size in 2002 CE as c. 8200–8300 cal. a BP, corresponding to the 8.2 ka event in the North Atlantic region. The regrowth of Sørfonna after the Holocene Thermal Optimum occurred at c. 6900 cal. a BP and Svartenutbreen was at modern size and extent in the periods c. 6400, c. 5450, c. 4850, c. 3850, c. 3550 and c. 1650 cal. a BP. Since 1650 cal. a BP, we infer that the glacier was larger than the 2002 CE glacier extent until 1910 CE when a GLOF occurred. Svartenutbreen has been retreating since 1910 CE, which led to the ice damming of the two historical GLOFs in the 1980s and 2002 CE separated by a glacier advance in the 1990s CE. The findings are discussed and compared to other regional glacier reconstructions in Norway, and emphasize the value of identifying and utilizing GLOFs as an indicator of past ELA variability.  相似文献   

18.
ABSTRACT Sedimentary cycles recorded in young sediments are often attributed to fluctuations of the Earth's climate on a 104−106-year scale which in turn is governed by periodic variations in solar insolation linked to orbital (Milankovitch) parameters. A spectacular example of cyclic stratal patterns in ancient deposits is the Middle Triassic Latemar carbonate platform (W Dolomites, N Italy). Based on spectral analyses from previous studies, a superimposition of precession (∼20 ka) and eccentricity (∼100 ka) controlled sea-level fluctuations has been suggested to account for the stacking hierarchy at Latemar, with ∼20 ka being assigned to each highest-order depositional cycle. Zircon U–Pb isotopic ages from volcanic-ash layers within the cyclic succession, corroborated by biostratigraphic constraints, suggest that the average time interval for every individual cycle is significantly smaller than the shortest Milankovitch period and therefore challenge previously published interpretations relating distinct spectral peaks to the above mentioned hierarchy. However, our new spectral data indicate that cyclicities resembling Milankovitch characteristics might exist, but on an entirely different scale. Our findings show that frequency spectra should only be interpreted in combination with robust age control. They also encourage the search for complementary mechanisms controlling carbonate deposition.  相似文献   

19.
冀中中奥陶统高频率旋回层序的基本特征   总被引:2,自引:0,他引:2  
通过野外实测剖面及路线观察,河北中部中奥陶统马家沟群的高频率旋回可划分为三个级别,并与层序地层学术语可以对比,由低到高为;六级旋回──韵律层;五级旋回──准层序;四级旋回──准层序组。这些由米兰柯维奇驱动力所控制的旋回层序在不同的沉积环境中具有不同岩石组合特征,反映了高频率旋回的沉积模式。  相似文献   

20.
《China Geology》2021,4(2):274-287
As cyclical orbital movements of Earth, Milankovitch cycles can be recorded in sedimentary strata. The time they reflect can be used to accurately divide and compare strata. Milankovitch cycles recorded in strata enrich the stratigraphic theory, especially the theories of cycle stratigraphy, and thus they are widely used in geological survey engineering nowadays. This study explored the characteristics of the Milankovitch cycles recorded in the eastern depression of the North Yellow Sea Basin, highlighting their control over high-frequency stratigraphic sequences. The Eocene Milankovitch cycles in the depression were calculated based on the method proposed by J. Laskar, and their parameters primarily include eccentricity cycles of 125 ka and 99 ka, obliquity cycles of 51 ka and 39 ka, and precession cycles of 23 ka and 19 ka. Spectral analysis of gamma-ray (GR) and spontaneous potential (SP) log curves of the Eocene strata was carried out to divide and compare stratigraphic sequences, revealing that the spectral peaks correspond well to astronomical cycles. This indicates that the strata in the depression fully record Milankovitch cycles. Furthermore, there are long-, medium-, and short-term stratigraphic cycles in the eastern depression, with a thickness of 13.03–15.89 m, 3.70–5.21 m, and 2.17–2.94 m, respectively. The sedimentation rates of the Eocene strata were calculated to be 121.2–127.12 m/Ma accordingly. From the uplift to the center of the lacustrine basin along the slope in the eastern depression, both the sedimentation duration and the sediment thickness increase, while the sedimentation rate remains relatively stable. The Eocene strata can be divided into six stages of high-frequency sequences by continuous wavelet transformation, namely E6–E1 from bottom to top. The sedimentation duration and sedimentation rates of the sequences were calculated using spectral analysis with each of the sequences as a separate window. Moreover, the impacts of climate change on the sedimentary environment in the eastern depression were analyzed. It can be concluded that E6 was a lowstand system tract, E5 and E4 were lacustrine expansion system tracts, E3 was a highstand system tract, and E2 and E1 were lacustrine contraction system tracts. All these verify that Milankovitch cycles serve as an effective approach for the analysis of sedimentary cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号