首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes the morphological and sedimentological evolution of a macrotidal beach over a 20 day period under varying hydrodynamic conditions (significant breaker heights of 0·3–2 m and tidal ranges of 2–5 m). During the field campaign, an intertidal bar developed around the mid‐tide level, migrated onshore, welded to the upper beach and was then flattened under energetic wave conditions. The bar had a wave breakpoint origin and its formation was triggered by a reduction in tidal range, causing more stationary water‐level conditions, rather than an increase in wave height. Most of the onshore bar migration took place while the bar was positioned in the inner to mid‐surf zone position, such that the bar moved away from the breakpoint and exhibited ‘divergent’ behaviour. The depth of disturbance over individual tidal cycles was 10–20% of the breaker height. Such values are more typical of steep reflective beaches, than gently sloping, dissipative beaches, and are considered to reflect the maximum height of wave‐generated ripples. The grain size distribution of surficial sediments did not vary consistently across the beach profile and temporal changes in the sedimentology were mostly unrelated to the morphological response. The lack of clear links between beach morphology and sedimentology may be in part due to shortcomings in the sampling methodology, which ignored the vertical variability in the sediment size characteristics across the active layer.  相似文献   

2.
Coastal lagoons and beach ridges are genetically independent, though non‐continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000‐year‐long record of Holocene relative sea‐level changes on the island of Samsø, southern Kattegat, Denmark. The reconstruction of the initial mid‐Holocene sea‐level rise is based on the sedimentary infill from topography‐confined coastal lagoons (Sander et al., Boreas, 2015b). Sea‐level index points over the mid‐ to late Holocene period of sea‐level stability and fall are retrieved from the internal structures of a wide beach‐ridge system (Hede et al., The Holocene, 2015). Data from sediment coring, georadar and absolute dating are thus combined in an inter‐disciplinary approach that is highly reproducible in micro‐tidal environments characterised by high sediment supply. We show here that the commonly proximate occurrence of coastal lagoons and beach ridges allows us to produce seamless time series of relative sea‐level changes from field sites in SW Scandinavia and in similar coastal environments.  相似文献   

3.
Guichen Bay on the south‐east coast of South Australia faces west towards the prevailing westerly winds of the Southern Ocean. The bay is backed by a 4 km wide Holocene beach‐ridge plain with more than 100 beach ridges. The morphology of the Guichen Bay strandplain complex shows changes in the width, length, height and orientation of beach ridges. A combination of geomorphological interpretation, shallow geophysics and existing geochronology is used to interpret the Holocene fill of Guichen Bay. Six sets of beach ridges are identified from the interpretation of orthorectified aerial photographs. The ridge sets are distinguished on the basis of beach‐ridge orientation and continuity. A 2·25 km ground‐penetrating radar (GPR) profile across the beach ridges reveals the sedimentary structures and stratigraphic units. The beach ridges visible in the surface topography are a succession of stabilized foredunes that overlie progradational foreshore and upper shoreface sediments. The beach progrades show multiple truncation surfaces interpreted as storm events. The GPR profile shows that there are many more erosion surfaces in the subsurface than beach ridges on the surface. The width and dip of preserved beach progrades imaged by GPR shows that the shoreface has steepened from around 2·9° to around 7·5°. The changes in beach slope are attributed to increasing wave energy associated with beach progradation into deeper water as Guichen Bay was infilled. At the same time, the thickness of the preserved beach progrades increases slightly as the beach prograded into deeper water. Using the surface area of the ridge sets measured from the orthophotography, and the average thickness of upper shoreface, foreshore and coastal dune sands interpreted from the GPR profile, the volume of Holocene sediments within three of the six sets of beach‐ridge accretion has been calculated. Combining optically stimulated luminescence (OSL) ages and volume calculations, rates of sediment accumulation for Ridge Sets 3, 4 and 5 have been estimated. Linear rates of beach‐ridge progradation appear to decrease in the mid‐Holocene. However, the rates of sediment accumulation calculated from beach volumes have remained remarkably consistent through the mid‐ to late Holocene. This suggests that sediment supply to the beach has been constant and that the decrease in the rate of progradation is due to increasing accommodation space as the beach progrades into deeper water. Changes in beach‐ridge morphology and orientation reflect environmental factors such as changes in wave climate and wind regime.  相似文献   

4.
Clastic, depositional strandplain systems have the potential to record changes in the primary drivers of coastal evolution: climate, sea‐level, and the frequency of major meteorological and oceanographic events. This study seeks to use one such record from a southern Brazilian strandplain to highlight the potentially‐complex nature of coastal sedimentological response to small changes in these drivers. Following a 2 to 4 m highstand at ca 5·8 ka in southern Brazil, falling sea‐level reworked shelf sediment onshore, forcing coastal progradation, smoothing the irregular coastline and forming the 5 km wide Pinheira Strandplain, composed of ca 500 successive beach and dune ridges. Sediment cores, grab samples and >11 km of ground‐penetrating radar profiles reveal that the strandplain sequence is composed of well‐sorted, fine to very‐fine quartz sand. Since the mid‐Holocene highstand, the shoreline prograded at a rate of ca 1 to 2 m yr?1 through the deposition of a 4 to 6 m thick shoreface unit; a 1 to 3 m thick foreshore unit containing ubiquitous ridge and runnel facies; and an uppermost beach and foredune unit. However, the discovery of a linear, 100 m wide barrier ridge with associated washover units, a 3 to 4 m deep lagoon and 250 m wide tidal inlet within the strandplain sequence reveals a period of shoreline transgression at 3·3 to 2·8 ka during the otherwise regressive developmental history of the plain. The protected nature of Pinheira largely buffered it from changes in precipitation patterns, wave energy and fluvial sediment supply during the time of its formation. However, multiple lines of evidence indicate that a change in the rate of relative sea‐level fall, probably due to either steric or ice‐volume effects, may have affected this coastline. Thus, whereas these other potential drivers cannot be fully discounted, this study provides insights into the complexity of decadal‐scale to millennial‐scale coastal response to likely variability in sea‐level change rates.  相似文献   

5.
Analysis of 75 vibracores from the backbarrier region of Kiawah Island, South Carolina reveals a complex association of three distinct stratigraphic sequences. Beach ridge progradation and orientation-controlled backbarrier development during the evolution of Kiawah Island, and resulted in deposition of: (1) a mud-rich central backbarrier sequence consisting of low marsh overlying fine-grained, tidal flat/lagoonal mud; (2) a sandy beach-ridge swale sequence consisting of high and low marsh overlying tidal creek channel and point bar sand, and foreshore/shoreface; and (3) a regressive sequence of sandy, mixed, and muddy tidal flats capped by salt marsh that occurs on the updrift end of the island. Central backbarrier deposits formed as a result of the development of the initial beach ridge on Kiawah Island. Formation of this beach ridge created a backbarrier lagoon in which fine-grained estuarine and tidal flat mud accumulated. Washovers, oyster mounds, and tidal creek deposits form isolated sand and/or shell-rich lenses in the lagoon. Spartina alterniflora low marsh prograded into the lagoon as the tidal flats aggraded. Barrier progradation and sediment bar-bypassing at Stono Inlet created digitate beach ridges on the northeast end of Kiawah Island. Within the beach-ridge swales, tidal flats were disconformably deposited on shoreface and foreshore sand of the older beach ridges. Tidal creek drainage systems evolved to drain the swales. These rapidly migrating creeks reworked the tidal flat, foreshore, and shoreface sediments while redepositing a fining-upward sequence of channel lag and point bar deposits, which served as a substrate for salt marsh colonization. This resultant regressive sedimentary package marks the culmination of barrier island development and estuary infilling. Given enough time and sedimentation, the backbarrier sequence will ultimately prograde over the barrier island, reworking dune, beach, and foreshore sediments to form the upper sand-rich bounding surface of the barrier lithosome. Preservation of the regressive sequence is dependent upon sediment supply and the relative rate of sea-level rise, but the reworking of barrier islands by tidal inlets and migrating tidal creeks greatly alter and complicate the stratigraphic sequence.  相似文献   

6.
The Pliocene–Pleistocene peripheral marine basins of the Mediterranean Sea in southern Italy, from Basilicata and western Calabria to northern and eastern Sicily, represent tectonically formed coastal embayments and narrow straits. Here, units of cross‐stratified, mixed silici–bioclastic sand, 25 to 80 m thick, record strong tidal currents. The Central Mediterranean Sea has had a microtidal range of ca 35 cm, and the local amplification of the tidal wave is attributed to tides enhanced in some of the bays and to the out‐of‐phase reversal of the tidal prism in narrow straits linking the Tyrrhenian and Ionian basins. The siliciclastic sediment was generated by local bedrock erosion, whereas the bioclastic sediment was derived from the contemporaneous, foramol‐type cool‐water carbonate factories. The cross‐strata sets represent small to medium‐sized (10 to 60 cm thick) two‐dimensional dunes with mainly unidirectional foreset dip directions. These tidalites differ from the classical tidal rhythmites deposited in mud‐bearing siliciclastic environments. Firstly, the foreset strata lack mud drapes and, instead, show segregation of siliciclastic and bioclastic sand into alternating strata. Secondly, the thickness variation of the successive silici–bioclastic strata couplets, measured over accretion intervals of 2 to 3 m and analysed statistically, reveal only the shortest‐term, diurnal and semi‐diurnal tidal cycles. Thirdly, the record of diurnal and semi‐diurnal tidal cycles is included within the pattern of neap‐spring cycles. Differences between these sediments and classical tidal rhythmites are attributed to the specific palaeogeographic setting of a microtidal sea, with the tidal currents locally enhanced in peripheral basins. It is suggested that this particular facies of mud‐free, silici–bioclastic arenite rhythmites in the stratigraphic record might indicate a specific type of depositional sub‐tidal environment of straits and embayments and the shortest‐term tidal cycles.  相似文献   

7.
ABSTRACT Mixed‐sand‐and‐gravel beaches are a distinctive type of coarse‐clastic beach. Ground‐penetrating radar (GPR) and photographic records of previous excavations are used to investigate the stratigraphy and internal sedimentary structure of mixed‐beach deposits at Aldeburgh in Suffolk, south‐east England. The principles of radar stratigraphy are used to describe and interpret migrated radar reflection profiles obtained from the study site. The application of radar stratigraphy allows the delineation of both bounding surfaces (radar surfaces) and the intervening beds or bed sets (radar facies). The deposits of the main backshore berm ridge consist of seaward‐dipping bounding surfaces that are gently onlapped by seaward‐dipping bed sets. Good correspondence is observed between a sequence of beach profiles, which record development of the berm ridge on the backshore, and the berm ridge's internal structure. The beach‐profile data also indicate that backshore berm ridges at Aldeburgh owe their origin to discrete depositional episodes related to storm‐wave activity. Beach‐ridge plain deposits at the study site consist of a complex, progradational sequence of foreshore, berm‐ridge, overtop and overwash deposits. Relict berm‐ridge deposits, separated by seaward‐dipping bounding surfaces, form the main depositional element beneath the beach‐ridge plain. However, the beach ridges themselves are formed predominantly of vertically stacked overtop/overwash units, which lie above the berm‐ridge deposits. Consequently, beach‐ridge development in this progradational, mixed‐beach setting must have occurred when conditions favoured overtopping and overwashing of the upper beachface. Interannual to decadal variations in wave climate, antecedent beach morphology, shoreline progradation rate and sea level are identified as the likely controlling factors in the development of such suitable conditions.  相似文献   

8.
A three-dimensional model for a tidal inlet-barrier island depositional system was constructed through examination of 37 vibracores and 10 auger drill holes on Capers and Dewees Islands, South Carolina. Two cycles of southerly inlet migration and subsequent abandonment resulted in beach ridge truncation on the northern ends of both barriers. Historical evidence indicates that these tidal inlets migrated 1.5 km to the south owing to a dominant north-south longshore transport direction. The hydraulic inefficiency of these over-extended inlet channels caused shorter, more northerly-oriented channels to breach through the ebbtidal deltas. After inlet reorientation, large wave-formed swash bars migrated landward closing former inlet channels. Weakened tidal currents through the abandoned channels permitted clay plugs to form thick impermeable seals over active channel-fill sand and shell. Price and Capers Inlets formed during the onset of the Holocene transgression following submergence of the ancestral Plio-Pleistocene Santee River drainage system. Coarse, poorly sorted inlet-deposited sand disconformably overlies Pleistocene estuarine clay and is capped by a dense clay plug. Shoreline reorientation and landward retreat of a primary barrier island chain occurred between the first and second cycles of inlet-channel migration and abandonment. Beach ridges prograded seaward over the first inlet sequence. A second cycle of inlet migration truncated the northernmost portion of these beach ridges and scoured into the clay plug of the earlier inlet deposit. Abandonment of this channel resulted in deposition of a second abandoned inlet-channel clay plug. Abandoned tidal inlet channels exhibit U-shaped strike and crescentic- to wedge-shaped dip geometries. Basal, poorly sorted inlet sands are sealed beneath impermeable, abandoned-channel silt and clay, washover deposits, and salt marsh. Multiple episodes of inlet migration and abandonment during a rising sea-level deposited stacked inlet-fill sequences within the barrier islands. The resultant stratigraphy consists of interlayered, fining-upward, active inlet-fill sand overlain by thicker abandoned inlet-fill clay plugs. These clay plugs form impermeable zones between adjacent barrier island sand bodies. Shoreline transgression would remove the uppermost barrier island deposits, sealing the inlet-fill sequences between Pleistocene estuarine clay and shoreface to shelf silt and clay.  相似文献   

9.
Although the north‐western coast of Western Australia is highly vulnerable to tropical cyclones and tsunamis, little is known about the geological imprint of historic and prehistoric extreme wave events in this particular area. Despite a number of site‐specific difficulties such as post‐depositional changes and the preservation potential of event deposits, both tropical cyclones and tsunamis may be inferred from the geomorphology and the stratigraphy of beach ridge sequences, washover fans and coastal lagoons or marshes. A further challenge is the differentiation between tsunami and storm deposits in the geological record, particularly where modern deposits and/or historical reports on the event are not available. This study presents a high‐resolution sedimentary record of washover events from the Ashburton River delta (Western Australia) spanning approximately the last 150 years. A detailed characterization of event deposits is provided, and a robust chronostratigraphy for the investigated washover sequence is established based on multi‐proxy sediment analyses and optically stimulated luminescence dating. Combining sedimentological, geochemical and high‐resolution optically stimulated luminescence data, event layers are assigned to known historical events and tropical cyclone deposits are separated from tsunami deposits. For the first time, the 1883 Krakatoa and 1977 Sumba tsunamis are inferred from sedimentary records of the north‐western part of Western Australia. It is demonstrated that optically stimulated luminescence applied in coastal sedimentary archives with favourable luminescence characteristics can provide accurate chronostratigraphies even on a decadal timescale. The results contribute to the data pool of tropical cyclone and tsunami deposits in Holocene stratigraphies; however, they also demonstrate how short‐lived sediment archives may be in dynamic sedimentary environments.  相似文献   

10.
Shelf ridges are sedimentary bodies formed on the continental shelf due to transgressive reworking (tidal or storm) of lowstand deposits. Common on modern shelves, they are under‐represented in the geological record due to a lack of recognition criteria and facies model. This article proposes a new facies and architectural model for shelf ridges, linked to their inception–evolution–abandonment cycle and the process regime of the basin. The model is mainly based on new outcrop data and interpretations from three sandstone bodies of the Almond Formation, an overall transgressive interval during the infill of the Campanian Western Interior Seaway. Building from the case study, and ancient and modern examples, six characteristics are proposed for the recognition of ancient shelf ridges. Shelf ridges: (i) are encased between thick marine mudstone intervals; (ii) have a basal unconformity that erodes into marine muds or into the remnants of a previous shoreline; (iii) have a non‐erosional upper boundary that transitions into marine muds; (iv) are characterized by clean and well‐sorted sandstones, often cross‐bedded; (v) contain fully marine ichnofauna; and (vi) present compound architectures with large accretion surfaces and lower order structures. Although shelf ridges have been described in previous studies as generated exclusively by either tidal or storm currents, it is clear, from modern examples and the case study, that these two processes can be recorded and preserved in a single shelf ridge. The stratigraphy of these sandstone bodies is therefore much more complex than previously recognized, bearing the signature of changing tidal and storm intensity through time. Because they are developed during transgressions, shelf ridges are commonly subject to strong changes in process regime as sea‐level changes can easily affect the oceanographic conditions and the morphology of the basin. For this reason, shelf ridges can provide the best record of shelf process variability during transgressions.  相似文献   

11.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

12.
An overstepped, concave‐eastward, barrier beach beneath Holocene mud in western Lake Ontario has been delineated by acoustic and seismic reflection profiles and piston cores, and related to Early Lake Ontario (ELO). The average ELO barrier depth below present mean lake level is 77.4 to 80.6 m, or about ?6 to ?2.8 m above present sea level. Trend surface analysis of Champlain Sea (Atlantic Ocean) marine limits defined the contemporaneous marine water surface, and projections of this surface pass ~25 m above the outlet sill of the Lake Ontario basin and extend to the ELO palaeo‐barrier, a unique sand and gravel deposit beneath western Lake Ontario. ELO was connected to the Champlain Sea above the isostatically rising outlet sill for up to three centuries after about 12.8 cal. ka BP, while the glacio‐isostatically depressed St. Lawrence River Valley was inundated by the Atlantic Ocean. During the period of this connection, ELO level was confluent with slowly rising sea level, and the lake constructed a transgressive beach deposit with washover surfaces. ELO remained fresh due to a high flux of meltwater inflow. The marine water level connection stabilized water level in ELO relative to its shore and facilitated shore erosion, sediment supply and barrier construction. Glacio‐isostatic uplift of the outlet sill, faster than sea‐level rise, lifted ELO above the Champlain Sea about 12.5 cal. ka. Shortly after, a hydrological deficit due mainly to a combination of diverted meltwater inflow and dry climate, well known from regional pollen studies, forced the lake into a lowstand. The lowstand stranded the barrier, which remains as evidence of sea level, the farthest inland in eastern North America north of the Gulf of Mexico at the time. The highest palaeo‐washover surface provides a sea‐level index point.  相似文献   

13.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

14.
The internal structure of coastal foredunes from three sites along the north Norfolk coast has been investigated using ground‐penetrating radar (GPR), which provides a unique insight into the internal structure of these dunes that cannot be achieved by any other non‐destructive or geophysical technique. Combining geomorphological and geophysical investigations into the structure and morphology of these coastal foredunes has enabled a more accurate determination of their development and evolution. The radar profiles show the internal structures, which include foreslope accretion, trough cut and fill, roll‐over and beach deposits. Foredune ridges contain large sets of low‐angle cross‐stratification from dune foreslope accretion with trough‐shaped structures from cut and fill on the crest and rearslope. Foreslope accretion indicates sand supply from the beach to the foreslope, while troughs on the dune crest and rearslope are attributed to reworking by offshore winds. Bounding surfaces between dunes are clearly resolved and reveal the relative chronology of dune emplacement. Radar sequence boundaries within dunes have been traced below the water‐table passing into beach erosion surfaces. These are believed to result from storm activity, which erodes the upper beach and dunes. In one example, at Brancaster, a dune scarp and erosion surface may be correlated with erosion in the 1950s, possibly the 1953 storm. Results suggest that dune ridge development is intimately linked to changes in the shoreline, with dune development associated with coastal progradation while dunes are eroded during storms and, where beaches are eroding, a stable coast provides more time for dune development, resulting in higher foredune ridges. A model for coastal dune evolution is presented, which illustrates stages of dune development in response to beach evolution and sand supply. In contrast to many other coastal dune fields where the prevailing wind is onshore, on the north Norfolk coast, the prevailing wind is directed along the coast and offshore, which reduces the landward migration of sand dunes.  相似文献   

15.
Hurricane Ike's storm surge deposited a concentrated shell bed in the form of a series of coalescing washover fans over backshore sand and adjoining marshland in part of southwest Louisiana's Chenier Plain. The shell bed is a tempestite and has distinctive morphological, sedimentological and biogenic characteristics that provide a modern analogue to aid interpretation of older shell bed tempestites in the geological record. The shell bed has a wedge‐shaped profile that thickens landward, is about 40 m wide, up to 27 cm thick and extends several hundred metres parallel to the shore. Shells are predominantly disarticulated valves of the common bivalve Mulinia lateralis, probably reworked and transported landward from skeletal remains offshore. The shell bed has an erosional base, is bioclast supported, normally graded and has common mud rip‐up clasts. Similarities between the modern shell bed and another concentrated shell deposit, forming part of a sandy beach ridge some 1.5 km inland, suggest that the palaeo shell deposit is also a tempestite recording hurricane washover of a former shoreline 600 a ago. These findings demonstrate that the shell bed deposited by Hurricane Ike is a valuable analogue for palaeotempestological investigations and that hurricanes have likely contributed to the construction of both modern berm ridges and palaeo beach ridges on this coastal plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
渤海湾沿岸贝壳堤对潮滩有孔虫海面变化指示意义的影响   总被引:1,自引:1,他引:0  
通过对渤海湾沿岸有贝壳堤发育和无贝壳堤发育的2类现代开放潮滩有孔虫组合的对比,研究了该2类潮滩环境沉积物中有孔虫的海面指示意义。5个有孔虫组合带被MHWST(平均大潮高潮位)、MHW(平均高潮位)、MHWNT(平均大潮低潮位)和MSL(平均海面)分隔,分别对应潮滩的高盐沼、低盐沼、潮间带上部、潮间带中上部和潮间带中下部5个不同亚环境。不同亚环境沉积物因其所含的有孔虫群的独特性,均可作为高精度海面标志物,误差为各亚带高差的1/2。沿岸贝壳堤可对潮滩有孔虫的属种组成产生影响,影响程度从高潮位向低潮位逐渐降低。在MHWNT潮位之下,有孔虫组合不再受到沿岸贝壳堤的影响。  相似文献   

17.
Sea‐level rise has been related to global warming. The modern system on the northern coast of Anholt, Denmark, may well be analogous to other beach ridge systems formed in microtidal regimes and our results should have impact on estimation of past sea‐level variation. Ground‐penetrating radar data collected across the modern (<30 years old) berm, beach ridge and swale deposits resolve downlapping reflections interpreted to mark sea level at the time of deposition. Existing time series of sea‐level data constrain actual sea‐level variation. Nineteen readings of sea‐level markers made along our profile fluctuate within ?0.42 and 0.57 m above present mean sea level, consistent with 95% of the sea‐level data. These fluctuations reflect tidal effects and meteorological conditions. Main data uncertainties are well‐known and the sea‐level markers may be identified with a high degree of confidence.  相似文献   

18.
A sedimentary model for hooked spit depositional systems based on ground‐penetrating radar and sedimentological data is presented. The recurved main spit of Sylt Island (southern North Sea) is dominated by migrating sand dunes; the investigated hooked spit exhibits a system of foredune ridges, oriented perpendicular to the dunes of the recurved spit. The development of the hooked spit is related closely to the presence of an adjacent tidal inlet, where strong tidal currents and a steep bathymetry prevent a further northward progradation of the main spit and trigger a deflection from northerly‐directed to easterly‐directed net sediment transport. Ground‐penetrating radar data and shallow sediment cores reveal the sedimentary architecture of the hooked spit in high resolution and allow the proposition of a genetic stratigraphic model. It is shown that the growth of the hooked spit is controlled by the interplay of alongshore migrating foreshore beach drifts under fair‐weather conditions and strong erosional events, interpreted as the result of rare severe storms. These storms may excavate scarps in the backshore, which play an important role in the development of foredune ridges. Accelerator mass spectrometry 14C ages indicate an absolute age of at least 1300 years for the hooked spit, which possibly correlates with strengthened erosion of the main spit. In contrast to the main spit, where the sediment budget is negative nowadays, growth of the hooked spit beach accelerated significantly during the last decades. This effect can probably be attributed to enhanced beach‐nourishments updrift along the main spit and makes the investigated hooked spit a natural laboratory to study the influence of increasing sediment supply into a system developing under the conditions of sea‐level rise. The study shows that the same external forces lead to distinct progradational processes along one barrier‐spit system.  相似文献   

19.
The Quaternary deposits of tectonically stable areas are a powerful tool to investigate high‐frequency climate variations (<10 ka) and to distinguish allogenic and autogenic factors controlling deposition. Therefore, an Upper Pleistocene–Holocene coastal apron‐fan system in north–western Sardinia (Porto Palmas, Italy) was studied to investigate the relations between climate changes, sea‐level fluctuations and sediment source‐supply that controlled its development. The sedimentary sequence records the strong influence of local (wet/dry) and worldwide (sea‐level) environmental variations in the sedimentation and preservation of the deposits. A multi‐disciplinary approach allowed subdivision of the succession into four major, unconformity‐bounded stratigraphic units: U1 U2, U3 and U4. Unit U1, tentatively dated to the warm and humid Marine Isotopic Stage (MIS) 5, consists of sandy, gravelly coastal/beach deposits developed during high sea‐level in low‐lying areas. Unit U2 consists of debris‐flow dominated fan‐deposits (ca 74 ka; MIS 4), preserved as partial fills of small valleys and coves. Unit U2 is mainly composed of reddish silty conglomerate to pebbly siltstones sourced from the Palaeozoic metamorphic inland hills (bedrock), superficially disintegrated during the preceding warm, vegetation‐rich MIS 5. The cold and semi‐arid climate strongly reduced vegetation cover along the valley flanks. Therefore, sediment gravity‐flow processes, possibly activated by rainstorms, led to deposition of debris‐flow dominated fans. Unit U3 consists of water‐flow dominated alluvial‐fan deposits (ca 47 to 23 ka; MIS 3), developed on a slightly inclined coastal plain. Unit U3 is composed of sandstone and sandy conglomerate fed from two main sediment sources: metamorphic inland bedrock and Quaternary bioclastic‐rich shelf‐derived sands. During this cold phase, sea‐level dropped sufficiently to expose bioclastic sands accumulated on the shelf. Frequent climate fluctuations favoured inland aeolian transport of sand during dry phases, followed by reworking of the aeolian bodies by flash floods during wet phases. Bedrock‐derived fragments mixed with water‐reworked, wind‐blown sands led to the development of water‐flow dominated fans. The Dansgaard–Oeschger events possibly associated with sand landward deflation and main fan formations are Dansgaard–Oeschger 13 (ca 47 ka), Dansgaard–Oeschger 8 (ca 39 ka) and Dansgaard–Oeschger 2 (ca 23 ka). No record of sedimentation during MIS 2 was observed. Finally, bioclastic‐rich aeolianites (Unit U4, ca 10 to 5 ka; MIS 1), preserved on a coastal slope, were developed during the Holocene transgression (ca 10 to 5 ka; MIS 1). The studied sequence shows strong similarities with those of other Mediterranean sites; it is, however, one of the few where the main MIS 4 and MIS 3 climatic fluctuations are registered in the sedimentary record.  相似文献   

20.
Depositional model for a chenier plain, Gulf of Carpentaria, Australia   总被引:1,自引:0,他引:1  
E. G. RHODES 《Sedimentology》1982,29(2):201-221
The southern coast of the Gulf of Carpentaria, Northern Australia, consists of a broad chenier plain which is comparable in size and morphology to those reported on the coasts of Surinam and south-western Louisiana. The Carpentaria chenier plain has, at some locations, prograded over 30 km since the Middle Holocene by deposition of low-tide muds over subtidal muds during periods of increased sediment input by the rivers. Chenier ridges are formed during periods of reduced sediment flux by wave induced sorting and redistribution processes. An alternation of increased and decreased sediment flux from fluvial sources has occurred several times during the upper Holocene. Such variation in sediment supply is believed to be related to temporal fluctuations in rainfall over the drainage basin which surrounds the southern and eastern Gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号