首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Kīlauea is the youngest of five basaltic shield volcanoes on the island of Hawai’i. It is located to the south‐east of the much larger Mauna Loa volcano, and rose above sea level about 100 ka ago. Kīlauea is one of the most monitored, and arguably the best understood volcanoes on Earth, providing scientists with a good understanding of its current eruption, in which magma rises from depth and is stored beneath its 4 × 3.2 km summit caldera in an underground reservoir. The reservoir is connected to a lava lake within a crater called Halema’uma’u, which is situated on the floor of the caldera. When magma drains from the summit area it travels in underground conduits and emerges on the flanks of the volcano at a rift zone, where it erupts through fissures. The magma is sometimes stored in other reservoirs along the way. This link between summit magma storage and fissure eruptions on the flanks has occurred thousands of times at many Hawai’ian volcanoes. The current eruptive episode is, however, a ‘once‐in‐a‐century’ show, because it is the first time since 1924 that fissure‐fed lava flow eruptions have been accompanied by significant explosive eruptions within Halema’uma’u Crater. This gives scientists a unique opportunity to use modern methods to understand exactly how such hazardous explosions happen at Kīlauea, a volcano that receives about 2 million visitors a year.  相似文献   

2.
The intention of our study was to gain new insight into the complex interplay between different types of eruption of the Stromboli volcano by combining detailed field observation with different geophysical methods. We recorded more than 600 eruptions by use of continuous Doppler radar measurements. We detected the onset of the seismic precursor and the beginning of the visible eruption by use of seismic and infrared data. Two soil samples per day were used to monitor the effect of humidity on the eruptive style. We mapped the crater region as a reference base for the long-term morphological changes of the active region and for the exact positions of our measurement systems. Two distinct types of eruption were distinguished from each other on the basis of seismic and radar data - short, wide-angle Strombolian explosions and pulsating, sharp angle fountain-like eruptions. Data and visual observations imply that weather conditions significantly effect volcanic activity. We also interpret the intensification of eruptive activity during our field study as replenishment of the reservoir with a new batch of magma in late September 2000.  相似文献   

3.
The so‐called ‘Tunguska Event’ refers to a major explosion that occurred on 30 June 1908 in the Tunguska region of Siberia, causing the destruction of over 2000 km2 of taiga, globally detected pressure and seismic waves, and bright luminescence in the night skies of Europe and Central Asia, combined with other unusual phenomena. The ‘Tunguska Event’ may be related to the impact with the Earth of a cosmic body that exploded about 5–10 km above ground, releasing in the atmosphere 10–15 Mton of energy. Fragments of the impacting body have never been found, and its nature (comet or asteroid) is still a matter of debate. We report results from the investigation of Lake Cheko, located ∼8 km NNW of the inferred explosion epicenter. Its funnel‐like bottom morphology and the structure of its sedimentary deposits, revealed by acoustic imagery and direct sampling, all suggest that the lake fills an impact crater. Lake Cheko may have formed due to a secondary impact onto alluvial swampy ground; the size and shape of the crater may have been affected by the nature of the ground and by impact‐related melting and degassing of a permafrost layer.  相似文献   

4.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   

5.
An effective approach to understanding the dynamics of explosive volcanic eruptions and the conduit systems that drive them is through synergy of multiple data sets. Three data sets that lend themselves to ease of integration are seismic, infrasonic and thermal. Although approaches involving these data have been used to record volcanological phenomena since 1862, 1955 and 1965, respectively, their integrated use has only developed since 1999. When combined, these three data sets allow constraint of shallow system geometry and the dynamics of the explosive events that occur within that system. Using Stromboli volcano (Italy) as a case study, we review the complete range of geochemical and geophysical studies that can be applied. In doing so, we aim to show how integration of these diverse studies allows insights into a plumbing system and the dynamics of the eruptive activity that the system feeds. When combined at Stromboli, these data provide constraint of multiple system parameters including chamber depths, gas and magma fluxes, shallow system magma residence times, explosion source depths, and the rise/ejection velocities of ascending gas slugs and ejecta. In turn, these results allow various conduit and eruption dynamic models to be applied and tested.The persistent and repeated mildly explosive events that characterize Stromboli have been modeled in terms of the coalescence of gas within the magma to form large gas slugs that ascend the remaining portion of the conduit to burst at the free surface. Our integrated seismic, infrasonic and thermal data sets indicate that gas coalescence occurs at a depth of ∼260 m, with a typical event frequency of ∼9/h. Infrasonic and thermal data show the explosion source to be located 20-220 m below the vent. Thermal data give emission velocities for the ejected fragments of 8-20 m/s, which converts to gas jet velocities of 23-39 m/s. Tracking these parameters in space and time shows that, although eruptions at Stromboli can be grouped into two characteristic types (simple and complex-each of which characterizes a particular crater, NE and SW, respectively), events within each type show significant short-term variability. The system does, however, appear robust, maintaining its characteristic strombolian eruption style after significant effusive phases and more energetic explosive events.  相似文献   

6.
We approach the reconstruction of the recent structural evolution of Stromboli volcano (Italy) and the analysis of the interplay between tectonics, gravity and volcanic deformation. By tying together structural, lithostratigraphic and rock mechanics data, we establish that since 100 ka BP, the edifice has faulted and jointed mainly along NE-striking planes. Faults mostly dip to the NW with normal displacement. Taking also into account the presence of a NW-trending regional least principal stress and of tectonic earthquake hypocenters inside the cone, we suggest that this fracturing can be related to the transmission of tectonic forces from the basement to the cone. Dyking concentrated along a main NE-trending weakness zone (NEZ) across the volcano summit, resembling a volcanic rift, whose geometry is governed by the tectonic field. In the past 13 ka, Stromboli experienced a reorganisation of the strain field, which was linked with the development of four sector collapses affecting the NW flank, alternating with growth phases. The tectonic strain field interplayed with dyking and fracturing related to unbuttressing along the collapse shoulders. We propose that tectonics control the geometry of dykes inside the cone and that these, in turn, contribute to destabilise the cone flanks.  相似文献   

7.
The first historical eruption of Kambalny volcano began on March 24, 2017 with the powerful ash emission from the summit crater reaching as high as 6 km above sea level. The explosive activity continued without interruption from March 24 to March 30. The most powerful ash emission was registered on March 25–26, when the ash plume drifted several thousand kilometers SW, S, and SE from the volcano. On April 2 and April 9, after several calm days, powerful ash explosions occurred generating ash plumes up to 7 km high. The area of the land and sea over which the ash plume drifted during the day of March 25, was 650000 km2; the area of the ash accumulation on the land that was formed from March 24 to April 9, exceeded 1500 km2. These parameters were measured using the satellite-based data in the VolSatView information system. Domination of the silty fraction and the presence of secondary minerals (pyrite, gypsum, sulfur, and others) in the ash point to the phreatic character of the volcanic eruption.  相似文献   

8.
High‐temperature gas in volcanic island arcs is widely considered to originate predominantly from the mantle wedge and from subducted sediments of the down‐going slab. Over the decade (1994–2005) prior to the 2006 eruption of Merapi volcano, summit fumarole CO2 gas δ13C ratios are relatively constant at ?4.1 ± 0.3‰. In contrast, CO2 samples taken during the 2006 eruption and after the May 26th 2006 Yogyakarta earthquake (M6.4) show a dramatic increase in carbon isotope ratios to ?2.4 ± 0.2‰. Directly following the earthquake (hypocentre depth 10–15 km), a 3–5‐fold increase in eruptive intensity was observed. The elevated carbon isotope gas data and the mid‐crustal depth of the earthquake source are consistent with crustal volatile components having been added during the 2006 events, most probably by the thick local limestone basement beneath Merapi. This ‘extra’ crustal gas likely played an important role in modifying the 2006 eruptive behaviour at Merapi and it appears that crustal volatiles are able to intensify and maintain eruptions independently of traditional magmatic recharge and fractionation processes.  相似文献   

9.
Ten well‐preserved, earthquake‐triggered liquefaction mounds and a carbonate sand volcano have been found in the Mesoproterozoic Wumishan Formation (1550–1400 Ma) in the Beijing area, North China. These features crop out in a roadcut near Zhuanghuwa Village. All ten mounds occur in the same sedimentary layer and have rounded shapes with some concentric and radial fissures arising from the centre. They range from 1.5 to 4 m in diameter and from 10 cm to 30 cm in height. The carbonate sand volcano has a diameter of 110 cm and the ‘crater’ at the top has a depth of about 30 cm. Associated with these mounds and the sand volcano are many ‘normal’ sedimentary structures and numerous soft‐sediment deformation structures. The former include ripple marks, cross‐bedding, stromatolites and desiccation cracks, indicating deposition in a stable shallow‐water peritidal platform environment. The latter include intrastratal faults and folds, seismically formed breccias and carbonate clastic dykes. The morphological features and the genesis of these liquefaction mounds are very similar to mounds formed recently by the great Wenchuan Earthquake of China (2008). Detailed thin‐section study of the mounds found no signs of any kind of biological constructional process; instead it reveals some obvious fluidification and liquefaction characteristics. Comparative studies have shown that these features are probably the products of Mesoproterozoic earthquake activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
We present here new measurements of sulfur dioxide and hydrogen sulfide emissions from Vulcano, Etna, and Stromboli (Italy), made by direct sampling at vents and by filter pack and ultraviolet spectroscopy in downwind plumes. Measurements at the F0 and FA fumaroles on Vulcano yielded SO2/H2S molar ratios of ≈0.38 and ≈1.4, respectively, from which we estimate an H2S flux of 6 to 9 t · d−1 for the summit crater. For Mt. Etna and Stromboli, we found SO2/H2S molar ratios of ≈20 and ≈15, respectively, which combined with SO2 flux measurements, suggest H2S emission rates of 50 to 113 t · d−1 and 4 to 8 t · d−1, respectively. We observe that “source” and plume SO2/H2S ratios at Vulcano are similar, suggesting that hydrogen sulfide is essentially inert on timescales of seconds to minutes. This finding has important implications for estimates of volcanic total sulfur budget at volcanoes since most existing measurements do not account for H2S emission.  相似文献   

11.
Kick em Jenny submarine volcano, ~8 km north of Grenada, has erupted at least 12 times since it was first discovered in 1939, making it the most frequently active volcano in the Lesser Antilles arc. The volcano lies in shallow water close to significant population centres and directly beneath a major shipping route, and as a consequence an understanding of the eruptive behaviour and potential hazards at the volcano is critical. The most recent eruption at Kick em Jenny occurred on December 4 2001, and differed significantly from past eruptions in that it was preceded by an intensive volcanic earthquake swarm. In March 2002 a multi-beam bathymetric survey of the volcano and its surroundings was carried out by the NOAA ship Ronald H Brown. This survey provided detailed three-dimensional images of the volcano, revealing the detailed morphology of the summit area. The volcano is capped by a summit crater which is breached to the northeast and which varies in diameter from 300 to 370 m. The depth to the summit (highest point on the crater rim) is 185 m and the depth to the lowest point inside the crater is 264 m. No dome is present within the crater. The crater and summit region of Kick em Jenny are located at the top of an asymmetrical cone which is about 1300 m from top to bottom on its western side. It lies within what appear to be the remnants of a much larger arcuate collapse structure. An evaluation of the morphology, bathymetry and eruptive history of the volcano indicates that the threat of eruption-generated tsunamis is considerably lower than previously thought, mainly because the volcano is no longer thought to be growing towards the surface. Of more major and immediate concern are the direct hazards associated with the volcano, such as ballistic ejecta, water disturbances and lowered water density due to degassing.  相似文献   

12.
In November 2017, Bali's ‘great volcano’, Gunung Agung, erupted for the first time since 1963—leading to the evacuation of nearly 150 000 people from a preliminary danger zone within a radius of 9–12 km from the summit. Since the phreatic onset of the eruption on 21 November, intermittent magmatic (Vulcanian) explosions continued to threaten local residents and disrupt air traffic to and from Indonesia's favourite tourist destination. Whereas the opening of the eruption seems to have been less energetic than the opening of the 1963 events, as of January 2018, the volcanic Alert Level for Agung remains at the highest level. Indeed, it remains unclear at this point what course the eruption will take and how long it will last, and the possibility remains that the eruption may turn more energetic in the months to come.  相似文献   

13.
Mount Erebus is an active volcano in Antarctica located on Ross Island. A convecting lava lake occupies the summit crater of Mt. Erebus. Since December 1980 the seismic activity of Mt. Erebus has been continuously monitored using a radio-telemetered network of six seismic stations. The seismic activity observed by the Ross Island network during the 1982–1983 field season shows that: (1)Strombolian eruptions occur frequently at the Erebus summit lava lake at rates of 2–5 per day; (2)centrally located earthquakes map out a nearly vertical, narrow conduit system beneath the lava lake; (3)there are other source regions of seismicity on Ross Island, well removed from Mt. Erebus proper. An intense earthquake swarm recorded in October 1982 near Abbott Peak, 10 km northwest of the summit of Mt. Erebus, and volcanic tremor accompanying the swarm, may have been associated with new dike emplacement at depth.  相似文献   

14.
Emission rates of CO2 have been measured at Kilauea volcano, Hawaii, in the east-rift eruptive plume and CO2 and SO2 have been measured in the plume from the noneruptive fumaroles in the summit caldera. These data yield an estimate of the loading of Kilauean eruptive gases to the atmosphere and suggest that such estimates may be inferred directly from measured lava volumes. These data, combined with other chemical and geologic data, suggest that magma arrives at the shallow summit reservoir containing (wt.%) 0.32% H2O, 0.32% CO2 and 0.09% S. Magma is rapidly degassed of most of its CO2 in the shallow reservoir before transport to the eruption site. Because this summit degassing yields a magma saturated and in equilibrium with volatile species and because transport of the magma to the eruption site occurs in a zone no shallower than the summit reservoir, we suggest that eruptive gases from Kilauea characteristically should be one of two types: a ‘primary’ gas from fresh magma derived directly from the mantle and a carbon-depleted gas from magma stored in the summit reservoir.  相似文献   

15.
16.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   

17.
Abstract. The Batu Hijau porphyry Cu‐Au deposit, Sumbawa Island, Indonesia, is associated with a tonalitic intrusive complex. The temperature‐pressure condition of mineralization at the Batu Hijau deposit is discussed on the basis of fluid inclusion microthermometry. Then, the initial Cu‐Fe sulfide mineral assemblage is discussed. Bornite and chalcopyrite are major copper ore minerals associated with quartz veinlets. The quartz veinlets have been classified into ‘A’ veinlets associated with bornite, digenite, chalcocite and chalcopyrite, ‘B’ veinlets having chalcopyrite bornite along vuggy center‐line, rare ‘C’ chalcopyrite‐quartz veinlets, and late ‘D’ veinlets consisting of massive pyrite and quartz (Clode et al., 1999). Copper and gold mineralization is associated with abundant ‘A’ quartz veinlets. Abundant fluid inclusions are found in veinlet quartz consisting mainly of gas‐rich inclusions and polyphase inclusions throughout the veinlet types. The hydrothermal activity occurred in temperature‐pressure conditions of aqueous fluid immiscibility into hypersaline brine and dilute vapor. The halite dissolution (Tm[halite]) and liquid‐vapor homogenization (Th) temperatures of the polyphase inclusions in veinlet quartz range from 270 to 472d?C and from 280 to 454d?C, respectively. The estimated salinity ranges from 36 to 47 wt% (NaCl equiv.). The apparent pressures lower than 300 bars are estimated to have been along the liquid‐vapor‐halite curve for the fluid inclusions having the Th lower than the Tm that trapped the brine saturated with halite, or at slightly higher pressure relative to liquid‐vapor‐halite curve for the fluid inclusions having the Th higher than the Tm that trapped the brine unsaturated with halite. The actual temperature and pressure during the hydrothermal activity at the Batu Hijau deposit are estimated to have been around 300d?C and 50 bars. At such temperature‐pressure conditions, the principal and initial Cu‐Fe sulfide mineral assemblages are thought to be chalcopyrite + bornite solid solution (bnss) for the chalcopyrite‐bearing assemblage, and chalcocite‐digenite solid solution and bnss for the chalcopyrite‐free assemblage.  相似文献   

18.
Pockmarks and mud volcanoes from marine and lacustrine environments are thought to be the surface expression of focused fluid flow (gas and/or water). However, the control fluid flow exerts on the sediment dynamics and rates of activity of such features, especially the maintenance and growth of pockmarks, is not well understood. This study suggests that variable fluid flow is the driving process that has maintained two lacustrine pockmarks over thousands of years. In Lake Neuchâtel (western Switzerland), the currently active Chez‐le‐Bart Pockmark (diameter ca 160 m, depth ca 10 m) and the Treytel Pockmark (diameter ca 100 m, depth ca 4 m) indicate ‘quiescent’ fluid flow as well as past, ‘eruptive’, events of subsurface sediment mobilization. This study aims to test the hypothesis that phases of increased fluid flow through the pockmarks have led to the remobilization and spilling of sediment over the pockmark rims, and that different modes of activity phases are responsible for their maintenance and growth. So termed ‘subsurface sediment mobilization deposits’ are visible in seismic profiles and correlate to specific, sedimentary intervals in Kullenberg‐type long piston cores. In a detailed analysis, different modes of transport are recognized, which are attributed to high‐density flows that correspond to multiple pulses of activity. The pockmark morphology, seismic stratigraphy and core correlation with pre‐existing data reveals that the two pockmarks have been maintained throughout the Holocene and underwent several switches between ‘quiescent’ and ‘eruptive’ mode activity.  相似文献   

19.
In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-rate mercury injection(CRMI) experiments are performed to study the micropore structure of the reservoir. Nuclear magnetic resonance(NMR), gas-water relative seepage, and gas-water two-phase displacement studies are performed to examine the seepage ability and parameters of the reservoir, and further analyses are done to confirm the controlling effects of reservoir micropore structures on seepage ability. The experimental results show that Benxi, Taiyuan, Shanxi, and Shihezi formations in the study area are typical ultra-low porosity and ultra-low permeability reservoirs. Owing to compaction and later diagenetic transformation, they contain few primary pores. Secondary pores are the main pore types of reservoirs in the study area. Six main types of secondary pores are: intergranular dissolved pores, intragranular dissolved pores, lithic dissolved pores, intercrystalline dissolved pores, micropores, and microfracture. The results show that reservoirs with small pore-throat radius, medium displacement pressure, and large differences in pore-throat structures are present in the study area. The four types of micropore structures observed are: lower displacement pressure and fine pores with medium-fine throats, low displacement pressure and fine micropores with fine throats, medium displacement pressure and micropores with micro-fine throats, and high displacement pressure and micropores with micro throats. The micropore structure is complex, and the reservoir seepage ability is poor in the study areas. The movable fluid saturation, range of the gas-water two-phase seepage zone, and displacement types are the three parameters that well represent the reservoir seepage ability. According to the characteristic parameters of microscopic pore structure and seepage characteristics, the reservoirs in the study area are classified into four types(Ⅰ–Ⅳ), and types Ⅰ, Ⅱ, and Ⅲ are the main types observed. From type Ⅰ to type Ⅳ, the displacement pressure increases, and the movable fluid saturation and gas-water two-phase seepage zone decrease, and the displacement type changes from the reticulation-uniform displacement to dendritic and snake like.  相似文献   

20.
We present a stabilized extended finite element formulation to simulate the hydraulic fracturing process in an elasto‐plastic medium. The fracture propagation process is governed by a cohesive fracture model, where a trilinear traction‐separation law is used to describe normal contact, cohesion and strength softening on the fracture face. Fluid flow inside the fracture channel is governed by the lubrication equation, and the flow rate is related to the fluid pressure gradient by the ‘cubic’ law. Fluid leak off happens only in the normal direction and is assumed to be governed by the Carter's leak‐off model. We propose a ‘local’ U‐P (displacement‐pressure) formulation to discretize the fluid‐solid coupled system, where volume shape functions are used to interpolate the fluid pressure field on the fracture face. The ‘local’ U‐P approach is compatible with the extended finite element framework, and a separate mesh is not required to describe the fluid flow. The coupled system of equations is solved iteratively by the standard Newton‐Raphson method. We identify instability issues associated with the fluid flow inside the fracture channel, and use the polynomial pressure projection method to reduce the pressure oscillations resulting from the instability. Numerical examples demonstrate that the proposed framework is effective in modeling 3D hydraulic fracture propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号