首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2.33–2.06 Ga positive δ13Ccarb excursion, associated with environmental change and the breakup of the Kenorland or Superia supercontinent, is called the Lomagundi or Jatulian Event or Great Oxidation Event, and has been reported in many Early Precambrian cratons, but not yet in the Sino-Korean craton. The Guanmenshan Formation of the Liaohe Group occurs in the northeastern part of the Sino-Korean craton. δ13Ccarb and δ18O values in 42 samples from this formation range from 3.5–5.9‰ (V-PDB), and 15.4–24.8‰ (V-SMOW), respectively, showing a clear positive δ13Ccarb excursion that characterizes the Lomagundi Event. Thirty-five of the 42 samples with less hydrothermal alteration have higher δ13Ccarb and δ18Ocarb values than the other 7 samples obviously affected by fluid flow, confirming that it was fluid flow that reduced the δ13Ccarb and δ18Ocarb values. This positive δ13Ccarb excursion places deposition of the Guanmenshan Formation within the age range of 2.33–2.06 Ga.  相似文献   

2.
《Gondwana Research》2014,25(3-4):1276-1282
Concentrations of total organic matter (TOC), carbon isotopic compositions of carbonate and organic matter (δ13Ccarb, δ13Corg), and sulfur isotopic compositions of carbonate associated sulfate (δ34Ssulfate) across the Guadalupian–Lopingian (G–L) boundary were analyzed from identical samples of Tieqiao section, Laibin, Guangxi province, South China. The δ13Ccarb values show a positive excursion from − 0.45‰ to the peak of 3.80‰ in the Laibin limestone member of the Maokou Formation, followed by a drastic drop to − 2.60‰ in the lowest Heshan formation, then returned to about 1.58‰. Similar to the trends of the δ13Ccarb values, Δ13Ccarb–org values also show a positive excursion followed by a sharp negative shift. The onset of a major negative carbon isotope excursion postdates the end Guadalupian extinction that indicates subsequent severe disturbance of the ocean–atmosphere carbon cycle. The first biostratigraphic δ34Ssulfate values during the G–L transition exhibit a remarkable fluctuation: a dramatic negative shift followed by a rapid positive shift, ranging from 36.88‰ to − 37.41‰. These sulfate isotopic records suggest that the ocean during the G–L transition was strongly stratified, forming an unstable chemocline separating oxic shallow water from anoxic/euxinic deep water. Chemocline excursions, together with subsequent rapid transgression and oceanic anoxia, were likely responsible for the massive diversity decline of the G–L biotic crisis.  相似文献   

3.
In order to constrain spatial variability in watermass conditions within the European Epicontinental Seaway prior to, during and after the Toarcian Oceanic Anoxic Event, carbon (δ13Cbel, δ13Ccarb) and oxygen (δ18Obel, δ18Ocarb) isotope records were obtained from three sections in the Grands Causses Basin (southern France). These data were then compared with similar records along a north–south transect across the European Epicontinental Seaway. As the conclusions reached here strongly depend on the reliability of belemnite calcites as archives of palaeoceanographic changes, an attempt was made to improve the understanding of isotope signals recorded in belemnite calcite. Intra‐rostral carbon and oxygen‐isotope data from six belemnite specimens belonging to the genus Passaloteuthis were collected. Intra‐rostral carbon‐isotopes are influenced by vital effects, whereas oxygen‐isotopes reflect relative changes in temperature and salinity. Palaeotemperatures calculated from δ18Obel‐isotope records from the Grands Causses Basin confirm relatively low temperatures throughout the Late Pliensbachian. Similar cool water conditions have previously been shown in Germany, England, Spain and Portugal. A temperature increase of up to 6 °C is observed across the Pliensbachian–Toarcian boundary. A pronounced negative shift of at least ?3‰ (Vienna‐Pee Dee Belemnite) is recorded in bulk carbonate carbon during the lower Harpoceras serpentinum zone, typical of the Toarcian Oceanic Anoxic Event. Before and after the Toarcian Oceanic Anoxic Event, a good correlation between δ13Ccarb and δ13Cbel exists, indicating well‐ventilated bottom‐waters and normal marine conditions. Instead, data for the Toarcian Oceanic Anoxic Event indicate the development of a strong north–south gradient in salinity stratification and surface‐water productivity for the Western Tethyan realm. This study thus lends further support to a pronounced regional overprint on carbon and oxygen‐isotope records in epicontinental seaways.  相似文献   

4.
During the Ordovician, huge biological revolutions and environmental changes happened in Earth’s history, including the Great Ordovician Biodiversification Event, global cooling and so on, but the cause of these events remains controversial. Herein, we conducted a paired carbon isotopic analysis of carbonate (δ13Ccarb) and organic matter (δ13Corg) through the Ordovician in the Qiliao section on the Yangtze platform of South China. Our results showed that the δ13Ccarb trend of the Qiliao section can be correlated with local and global curves. The δ13Corg trend seems is less clear than the δ13Ccarb trend for stratigraphic correlations, but some δ13Corg positive excursions in the Middle and Upper Ordovician may be used for correlation studies. These carbon isotopic records may have global significance rather than local significance, revealing several fluctuations to the global carbon cycle during the Ordovician. Several known δ13Ccarb and δ13Corg negative and positive excursions have been recognised in this study, including the early Floian Negative Inorganic Carbon (δ13Ccarb) Excursion (EFNICE), as well as the early Floian Positive Organic Carbon (δ13Ccarb) Excursion, the mid-Darriwilian Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (MDICE), and the early Katian Guttenberg Inorganic Carbon (δ13Ccarb and δ13Corg) Excursion (GICE). These positive excursions and a smooth decline trend of δ13Corg values during the early to mid-Floian may imply multiple episodes of enhanced organic carbon burial that began at the early Floian stage, probably resulting in further decline in atmospheric pCO2 and then global cooling.  相似文献   

5.
The Rb-Sr isochron age of igneous ankerite-calcite and siderite carbonatites in central Tuva is estimated at 118 ± 9 Ma. The following ranges of initial values of O, C, Sr, and sulfide and S isotopic compositions were established: δ18Ocarb = +(8.8?14.7)‰, δ13Ccarb = ?(3.6?4.9)‰, δ18Oquartz = +(11.6?13.7)‰, δ34Spyrite = +(0.3?1.1)‰, and (87Sr/86Sr)i =0.7042?0.7048 for ankerite-calcite carbonatite and δ18Osid = +(9.2?12.4)‰, δ13Csid = ?(3.9?5.9)‰, δ18Oquartz = +(11.2?11.4)‰, δ34Spyrite = ?(4.4–1.8)‰, δ34Ssulfate = +(8.6?14.5)‰, and (87Sr/86Sr)i = 0.7042?0.7045 for siderite carbonatite. The obtained isotopic characteristics indicate that both varieties of carbonatites are cognate and their mantle source is comparable with the sources of Late Mesozoic carbonatites in the western Transbaikal region and Mongolia. The revealed heterogeneity of isotopic compositions of carbonatites is caused by their contamination with country rocks, replacement with hydrothermal celestine, and supergene alteration.  相似文献   

6.
In order to examine the causal relationships between the carbon cycle in a shallow euphotic zone and the environmental changes in a relatively deep disphotic zone at the end-Guadalupian (Middle Permian), isotopic compositions of carbonate carbon (δ13Ccarb) of the Guadalupian–Lopingian (Upper Permian) rocks were analyzed in the Chaotian section in northern Sichuan, South China. By analyzing exceptionally fresh drill core samples, a continuous chemostratigraphic record was newly obtained. The ca. 65 m-thick analyzed carbonate rocks at Chaotian comprise three stratigraphic units, i.e., the Limestone Unit of the Guadalupian Maokou Formation, the Mudstone Unit of the Maokou Formation, and the lower part of the Wuchiapingian (Lower Lopingian) Wujiaping Formation, in ascending order. The Limestone Unit of the Maokou Formation is characterized by almost constant δ13Ccarb values of ca. +4‰ followed by an abrupt drop for 7‰ to −3‰ in the topmost part of the unit. In the Mudstone Unit of the Maokou Formation, the δ13Ccarb values are rather constant around +2‰, although distinct three isotopic negative excursions for 3‰ from ca. +2 to −1‰ occurred in the upper part of the unit. In the lower part of the Wujiaping Formation, the δ13Ccarb values monotonously increase for 5‰ from ca. 0 to +5‰. The present data newly demonstrated four isotopic negative excursions in the topmost part of the Maokou Formation in the Capitanian (Late Guadalupian) at Chaotian. It is noteworthy that these negative excursions are in accordance with the emergence of an oxygen-depleted condition on the relatively deep disphotic slope/basin on the basis of litho- and bio-facies characteristics. They suggest multiple upwelling of oxygen-depleted waters with dissolved inorganic carbon of relatively low carbon isotope values along the continental margin, from the deeper disphotic slope/basin to the shallower euphotic shelf, slightly before the end-Guadalupian extinction. Although the negative excursions at Chaotian are apparently correlated with the previously proposed large negative excursion in the middle Capitanian in South China, the age difference according to the biostratigraphic constraints clearly exclude this interpretation. The isotopic negative excursions at Chaotian are unique and no similar isotopic signal in the same period has been reported elsewhere. The multiple upwelling of oxygen-depleted waters onto the euphotic shelf may have represented local phenomena that occurred solely around northwestern South China.  相似文献   

7.
《Gondwana Research》2014,25(3):1057-1069
The appearance of multicellular animals and subsequent radiation during the Ediacaran/Cambrian transition may have significantly changed the oceanic ecosystem. Nitrogen cycling is essential for primary productivity and thus its connection to animal evolution is important for understanding the co-evolution of the Earth's environment and life. Here, we first report on coupled organic carbon and nitrogen isotope chemostratigraphy from the entire Ediacaran to Early Cambrian period by using drill core samples from the Yangtze Platform, South China. The results show that δ15NTN values were high (~ + 6‰) until middle Ediacaran, gradually dropping down to − 1‰ at the earliest Cambrian, then rising back to + 4‰ in the end of the Early Cambrian. Organic carbon and nitrogen contents widely varied with a relatively constant C/N ratio in each stratigraphic unit, and do not apparently control the carbon and nitrogen isotopic trends. These observations suggest that the δ15NTN and C/N trends mainly reflect secular changes in nitrogen cycling in the Yangtze Platform. Onset of the observed negative N isotope excursion coincided with a global carbon isotope excursion event (Shuram excursion). Before the Shuram event, the high δ15N probably reflects denitrification in a nitrate-limited oceanic condition. Also, degradation of dissolved and particulate organic matter could be an additional mechanism for the 15N-enrichment, and may have been significant when the ocean was rich in organic matter. At the time of the Shuram event, both δ13Ccarb and δ15NTN values were dropped probably due to massive re-mineralization of organic matter. This scenario is supported by an anomalously low C/N ratio, implying that enhanced respiration resulted in selective loss of carbon as CO2 with recycled organic nitrogen. After the Shuram event, the δ15N value continued to decrease despite that δ13Ccarb rose back to + 4‰. The continued δ15N drop appears to have coincided with a decreasing phosphorus content in carbonate. This suggests that ocean oxygenation may have generated a more nitrate-rich condition with respect to phosphorus as a limiting nutrient. Similar to the Shuram event, another negative δ13Ccarb event in the Canglanpuan stage of the Early Cambrian is also characterized by carbon isotopic decoupling as well as the low C/N ratio. The results strongly support that the two stages of the decoupled negative δ13Ccarb excursions reflect a disappearance of a large organic carbon pool in the ocean. The two events appear to relate with the appearance of new metazoan taxa with novel feeding strategies, suggesting a link between ocean oxygenation, nutrient cycling and the appearance and adaptation of metazoans. The nitrogen isotope geochemistry is very useful to understand the link between the environmental, ecological and biological evolutions.  相似文献   

8.
《Gondwana Research》2014,25(3):1045-1056
A remarkable increase of the animal genera and a subsequent mass extinction in the late Early Cambrian are well known as the “Cambrian explosion” and the “Botomian–Toyonian crisis.” A composite global curve of the carbon isotope ratios for inorganic carbon (δ13Ccarb) shows multiple fluctuations during the evolution events, and it indicates significant changes of the oceanic carbon cycle at that time. This study reveals a new continuous isotopic chemostratigraphy for inorganic carbon (δ13Ccarb) from the bottom of the Shipai to the base of the Shilongdong formations in Three Gorges area, South China. This section covers the Canglangpuian to the Longwangmiaoian stages in the Lower Cambrian. The δ13Ccarb variation exhibits three negative excursions: a remarkably negative excursion down to ca. − 12‰ in the middle Canglangpuian stage, a negative excursion to ca. − 1.0‰ in the upper Canglangpuian stage, and a negative excursion to ca. − 1.0‰ in the Longwangmiaoian stage, respectively. The largest negative δ13Ccarb excursion and a positive excursion before the excursion are definitely consistent with the δ13Ccarb negative shift (AECE) during the mass extinction and the δ13Ccarb positive values (MICE) during the increase of animal genera, respectively. However, the minimum values of the negative shifts among South China, Siberia, and Canada sections are different from each other. The positive δ13Ccarb excursion at the bottom of the Canglangpuian stage indicates that primary productivities and organic carbon burial were enhanced. A sea level rise in the Qiongzhusian to bottom of the Canglangpuian stages in South China corresponds to the Sinsk transgression event in Siberia and Canada. A eutrophication due to higher continental weathering during the transgression after the long-term retrogression enhanced the high primary production and consequently promoted the significant increase of animal diversity.On the other hand, deposition of laminated black shales without bioturbation signatures and a decline of trilobite diversity are observed during the negative δ13Ccarb excursion in the Canglangpuian stage, indicating that the shallow water environment became anoxic at that time. The negative δ13Ccarb shift indicates an influx of abundant 12CO2 due to oxidation of organic carbons in seawater. The difference of the minimum values among sections implies the local difference in size of the organic carbon reservoirs and extent of the degradation of the carbons. The largest δ13C anomaly in South China suggests the presence of the largest OCPs due to higher activity of primary production and high degree of oxidation of the OCPs because of higher activity of animals. The coincidence of the timing of the negative δ13C excursions in the Canglangpuian stage among the sections indicates a global event, and suggests that the onset was caused by increase of oxygen contents of seawater and atmosphere. Abundant oxygen yielded by the increased primary productivity in the Atdabanian and the Qiongzhusian stages caused onset of the oxidation of OCP, and possibly led to the shallow water anoxia and the mass extinction of benthic animals in the Botomian and the Canglangpuian stage.  相似文献   

9.
Secular variations in stable carbon‐isotope values of marine carbonates are used widely to correlate successions that lack high‐resolution index fossils. Various environmental processes, however, commonly may affect and alter the primary marine carbon‐isotope signal in shallow epicratonic basins. This study focuses on the marine carbon‐isotope record from the carbonate–evaporite succession of the upper Katian (Upper Ordovician) Red River Formation of the shallow epicratonic Williston Basin, USA. It documents the carbon‐isotope signal between the two major Ordovician positive shifts in δ13C, the early Katian Guttenberg and the Hirnantian excursions. Eight δ13C stages are identified based on positive excursions, shifts from positive to negative values and relatively uniform δ13Ccarb values. A correlation between carbon‐isotope trends and the relative sea‐level changes based on gross facies stacking patterns shows no clear relation. Based on the available biostratigraphy and δ13C trends, the studied Williston Basin curves are tied to the isotope curves from the North American Midcontinent, Québec (Anticosti Island) and Estonia, which confirm the Late Katian age (Aphelognathus divergens Conodont Zone) of the upper Red River Formation. The differences in the δ13C overall trend and absolute values, coupled with the petrographic and cathodoluminescence evidence, suggest that the carbon‐isotope record has been affected by the syndepositional environmental processes in the shallow and periodically isolated Williston Basin, and stabilized by later burial diagenesis under reducing conditions and the presence of isotopically more negative fluids.  相似文献   

10.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

11.
Second‐order transgressive–regressive (T–R) cycles, previously recognized using sedimentological criteria in Lower Jurassic hemipelagic deposits from northern Spain, are distinguishable based upon bulk‐rock organic geochemistry [total organic carbon (TOC) and hydrogen index (HI)] and the stable carbon isotope compositions from belemnite rostra. There is a coincidence between regressions and decreasing δ13Cbel, TOC and HI values, and between transgressions and increasing δ13Cbel, TOC and HI values. The δ18O and Mg/Ca records from the belemnite rostra are not always in phase with the T–R cycles. The δ18Obel record reveals, however, a prominent excursion towards higher values within the spinatum Zone that correlates, according to our results, with a regression and with negative shifts in Mg/Ca, δ13Cbel and TOC. On the other hand, an excursion in the δ18Obel towards lower values in the serpentinus Zone also correlates with a peak transgression and with positive shifts in Mg/Ca, δ13Cbel and TOC. These two excursions have been identified in other European regions as geochemical perturbations of the same characteristics. This suggests a link between second‐order relative sea‐level changes and variations in seawater geochemistry that may reflect local and regional palaeoceanographic perturbations in sea‐water temperature, salinity and water circulation during the Early Jurassic. Terra Nova, 18, 233–240, 2006  相似文献   

12.
One hundred and twenty-four carbonate samples from the meta-sedimentary sequence of the 3.7 × 109 yr old Isua supracrustal belt (W-Greenland) have yielded a δ13Ccarb average of ?2.5 ± 1.7%. vs PDB and a δ18Ocarb average of +13.0 ± 2.5%. vs SMOW. The oxygen mean comes fairly close to the averages of other early Precambrian carbonates. The carbon average, however, is some 2%. more negative than those of younger marine carbonates. In terms of a simple terrestrial 13C mass balance, if δ13Ccarb values are original sedimentary values, this more negative δ13C average would imply a considerably smaller CorgCcarb ratio in the sedimentary shell during Isua times, and would thus support the concept of a gradual buildup of a sedimentary reservoir of organic carbon during the early history of the Earth. Since, however, the Isua supracrustal rocks have experienced amphibolite-grade metamorphism, which in other areas has been shown to lower δ13Ccarb values, it is most likely that the original values of these rocks were approx 0%.. This indicates that Corx and Ccarb were present in the ancient carbon reservoir in about ‘modern’ proportions. Unless this early stabilization of the terrestrial carbon cycle in terms of a constant partitioning of carbon between the reduced and oxidized species is shown to have been caused by some inorganic geochemical process, a considerably earlier start of chemical evolution and spontaneous generation of life must be considered than is presently accepted.  相似文献   

13.
Strontium and carbon isotope stratigraphy was applied to a 202 m-thick shallow marine carbonate section within the Late Jurassic Bau Limestone at the SSF quarry in northwest Borneo, Malaysia, which was deposited in the western Palaeo-Pacific. Strontium isotopic ratios of rudist specimens suggest that the SSF section was formed between the latest Oxfordian (155.95 Ma) and the Late Kimmeridgian (152.70 Ma), which is consistent with previous biostratigraphy. The δ13Ccarb values of bulk carbonate range from −0.10 to +2.28‰ and generally show an increasing upward trend in the lower part of the section and a decreasing upward trend in the upper part of the section. A comparable pattern is preserved in the δ13Corg isotope record. Limestone samples of the SSF section mainly preserve the initial δ13Ccarb values, except for the interval 84–92 m, where an apparent negative anomaly likely developed as a result of meteoric diagenesis. Comparing with the Tethyan δ13Ccarb profile, a negative anomaly in the lower SSF section can be correlated with the lowered δ13C values around the Oxfordian/Kimmeridgian boundary. In addition, δ13Ccarb values of the Bau Limestone are generally ∼1‰ lower than the Tethyan values, but comparable with the values reported from Scotland and Russia, located in Boreal realm during the Late Jurassic. This suggests that either the Tethyan record or the other records have been affected by the δ13C values of regionally variable dissolved inorganic carbon (DIC). The Late Jurassic δ13CDIC values are thought to have been regionally variable as a result of their palaeoceanographic settings. This study shows that δ13C chemostratigraphy of the Palaeo-Pacific region contributes to an improved understanding of global carbon cycling and oceanography during this time period.  相似文献   

14.
We discuss water oxygen isotopes (δ18Ow) and carbon isotopes of dissolved inorganic carbon (δ13CDIC) of brine‐enriched shelf water (BSW) from Storfjorden (southern Svalbard) in comparison to Recent benthic foraminiferal δ18Oc and δ13Cc calcified in the same water. We determined relatively high δ18Ow values of 0.15±0.03‰ VSMOW in BSW below sill depth at temperatures below ?1.8 °C, and high δ18Oc values of 3.90±0.18‰ VPDB. Such high BSW δ18Ow cannot significantly deplete 18Ow contents of Arctic Ocean deep water; furthermore, such high δ18Oc cannot be distinguished from δ18Oc values of 3.82±0.12‰, calcified in warmer Arctic and Nordic seas intermediate and deeper waters. Today, in Storfjorden low benthic δ13Cc and high δ18Oc reflect the low δ13CDIC and relatively high δ18Ow of BSW. High benthic δ18Oc is in contrast to expected low δ18Oc as brine rejection is widely thought to predominantly take place in surface water diluted by meteoric water with very low δ18Ow. Low epibenthic δ13Cc values of 0.50±0.12‰ partly reflect low δ13CDIC caused by enhanced uptake of atmospheric low δ13CCO2 decreased by anthropogenic activities. An adjustment for preindustrial higher values would increase δ13Cc by about 0.6‰. Therefore, in Storfjorden brine formed before the industrial era would be characterized by both high δ13Cc as well as high δ18Oc values of benthic foraminiferal calcite. Our data may cast doubt on scenarios that explain negative excursions in benthic foraminiferal stable isotope records from the Atlantic Ocean during cold stadials in the last glacial period by enhanced brine formation in Nordic seas analogously to modern processes in Storfjorden.  相似文献   

15.
We studied calcite and rhodochrosite from exploratory drill cores (TH‐4 and TH‐6) near the Toyoha deposit, southwestern Hokkaido, Japan, from the aspect of stable isotope geochemistry, together with measuring the homogenization temperatures of fluid inclusions. The alteration observed in the drill cores is classified into four zones: ore mineralized zone, mixed‐layer minerals zone, kaolin minerals zone, and propylitic zone. Calcite is widespread in all the zones except for the kaolin minerals zone. The occurrence of rhodochrosite is restricted in the ore mineralized zone associated with Fe, Mn‐rich chlorite and sulfides, the mineral assemblage of which is basically equivalent to that in the Toyoha veins. The measured δ18OSMOW and δ13CPDB values of calcite scatter in the relatively narrow ranges from ?2 to 5‰ and from ?9 to ?5‰, respectively; those of rhodochrosite from 3 to 9‰ and from ?9 to ?5‰, excluding some data with large deviations. The variation of the isotopic compositions with temperature and depth could be explained by a mixing process between a heated surface meteoric water (100°C δ18O =?12‰, δ13C =?10‰) and a deep high temperature water (300°C, δ18O =?5‰, δ13C =?4‰). Boiling was less effective in isotopic fractionation than that of mixing. The plots of δ18O and δ13C indicate that the carbonates precipitated from H2CO3‐dominated fluids under the conditions of pH = 6–7 and T = 200–300°C. The sequential precipitation from calcite to rhodochrosite in a vein brought about the disequilibrium isotopic fractionation between the two minerals. The hydrothermal fluids circulated during the precipitation of carbonates in TH‐4 and TH‐6 are similar in origin to the ore‐forming fluids pertaining to the formation of veins in the Toyoha deposit.  相似文献   

16.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time,as long as they are acquired from waters where the dissolved inorganic carbon(DIC)is in isotope equilibrium with the atmospheric CO2.However,in shallow water platforms and epeiric settings,the influence of local to regional parameters on carbon cycling may lead to DIG isotope variations unrelated to the global carbon cycle.This may be especially true for the terminal Neoproterozoic,when Gondwana assembly isolated waters masses from the global ocean,and extreme positive and negative carbon isotope excursions are recorded,potentially decoupled from global signals.To improve our understanding on the type of information recorded by these excursions,we investigate the pairedδ^13Ccarb andδ^13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior:the basal Bambui Group.This succession represents a 1~(st)-order sedimentary sequence and records two majorδ^13Ccarb excursions in its two lowermost lower-rank sequences.The basal cap carbonate interval at the base of the first sequence,deposited when the basin was connected to the ocean,hosts antithetical negative and positive excursions forδ^13Ccarb andδ^13Corg,respectively,resulting inΔ^13C values lower than 25‰.From the top of the basal sequence upwards,an extremely positiveδ^13Ccarb excursion is coupled toδ^13Corg,reaching values of+14‰and-14‰,respectively.This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambui Group that occurs with only minor changes inΔ^13C values,suggesting change in the DIC isotope composition.We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles.This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis,favored by the basin restriction.The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere,resulting in a^13C-enriched DIC influenced by methanogenic CO2.Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere,potentially affecting both the global carbon cycle and the climate.  相似文献   

17.
J. A. BEIER 《Sedimentology》1987,34(6):991-998
Two caliche profiles from a Pleistocene carbonate dune on San Salvador Island, Bahamas, were examined by petrographic and geochemical analysis. Profile A is an immature buried caliche profile characterized by caliche pisolites, a friable crust and abundant Cerion. Profile B is a more well-developed caliche profile at the top of the dune which contains abundant pisolites, rhizomorphs, laminated calcrete, a breccia and abundant Cerion. Geochemical changes in caliche profiles relative to the host rock are an increase in Al2O3, Fe2O3 and total organic carbon, a decrease in Mg and Sr, and a decrease in δ13Ccarb, δ18Ocarb and δ13Corg. The magnitude of these changes is probably a function of the duration of subaerial exposure and resultant colonization by dune plants and associated microflora. Abundance of calcified filaments and needle-fibre crystals in profile A attests to the importance of microbial processes in the early development of caliche profiles. Biogenic structures are largely destroyed in profile B due to recrystallization, but indirect evidence of biological activity is retained in the form of carbon isotope values.  相似文献   

18.
Stable isotope and trace element analyses of 230 Jurassic (Pliensbachian–Toarcian) samples from northern Spain have been performed to test the use of geochemical variations in fossils (belemnites and brachiopods) and whole‐rock hemipelagic carbonates as palaeoceanographic indicators. Although the succession analysed (Reinosa area, westernmost Basque–Cantabrian Basin) has been subject to severe thermal alteration during burial diagenesis, the samples appear to be well preserved. The degree of diagenetic alteration of the samples has been assessed through the application of integrated petrographic, chemical and cathodoluminescence analyses. It is demonstrated that brachiopods and whole‐rock carbonates, although widely used for palaeoceanic studies, do not retain their primary marine geochemical composition after burial diagenesis. In contrast, there is strong evidence that belemnite rostra preserve original isotopic values despite pervasive diagenesis of the host rock. Well‐preserved belemnite shells (non‐luminescent to slightly luminescent) typically show stable isotope values of +4·3‰ to –0·7‰δ13C, +0·7‰ to –3·2‰δ18O, and trace element contents of <32 μg g–1 Mn, <250 μg g–1 Fe, >950 μg g–1 Sr and Sr/Mn ratios >80. This study suggests that the degree to which diagenesis has affected the preservation of an original isotopic composition may differ for different low‐Mg calcite fossil shells and hemipelagic bulk carbonates, behaviour that should be considered when marine isotopic signatures from other ancient carbonate rocks are investigated. Multiple non‐luminescent contemporaneous belemnite samples passed the petrographic and geochemical tests to be considered as palaeoceanic recorders, yet their δ13C and δ18O values exhibited moderate scatter. Such variability is likely to be related to the palaeoecological behaviour of belemnites and/or high‐frequency secular variations in sea‐water chemistry superimposed on the long‐term isotopic trend. A pronounced positive carbon‐isotope excursion (up to +4·3‰) is documented in the early Toarcian serpentinus biozone, which correlates with the Toarcian δ13C maximum reported in other European and Tethyan regions.  相似文献   

19.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

20.
The first detailed isotope-geochemical study of carbonate deposits has been performed in the Lower Famennian stratotype section of the northwestern Kuznetsk Basin (Kosoy Utyos), which was localized in the middle latitudes of the Northern Hemisphere in the Late Devonian. The δ13Ccarb, δ13Corg, and δ18O variation curves were constructed for the section deposits. Geochemical and petrographic studies of carbonates allowed allocation of samples that underwent postsedimentation alteration and exclude them from further interpretation. Compared with coeval sections in the other world's regions, the Kosoy Utyos section is characterized by higher δ13Ccarb values, up to 5.4‰, whereas the maximum value in subequatorial area sections is 4‰. The isotope shift amplitude of the studied section reaches 4.6‰, which is 1.5‰ higher than those in other regions. The δ18O values are 3‰ lower than the ones of the world's coeval sections. The results obtained show that δ13C and δ18O variation trends differ from those of coeval subequatorial sections. The high shift amplitude and maximum δ13Ccarb values in the Kosoy Utyos section are due to the shallow-water carbonate sedimentation environments on the Siberian continental shelf and, probably, the lower temperatures of waters in the middle latitudes as compared with the subequatorial areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号