首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fault rocks formed in phyllosilicate-bearing rocks formed over a wide range of environmental conditions within the Earth's crust are characterised by similar structural and microstructural features. The most striking of these are (a) P foliation, defined by the preferred alignment of phyllosilicates in a plane oblique to the direction of shear and (b) small-scale shear zones either parallel to the shear direction (Y shears) or oblique to the direction of shear but with the opposite sense of obliquity relative to the P foliation (Riedel shears, R1). The minor shear zones have the same sense of displacement as the host shear zone.The occurrence of these and other structures in clay-rich fault gouges from exceptionally well-exposed fault zones in southeastern Spain is described. The pervasive development of these flow structures throughout large volumes of fault gouge permits fault-displacement vectors to be inferred. For the region studied the movement pictures is relatively simple and is superposed on a complex network of variably oriented fault zones.The naturally produced fault-gouge structures are compared with fault gouges produced experimentally by shearing kaolinite-quartz mixtures between intact blocks over a wide range of experimental conditions. Good correspondence between their respective microstructural features was observed.Finally, attention is drawn to the fact that natural clay-bearing fault gouges are the products of deformation accompanied by very low-grade retrogressive metamorphism, and that part of the micro-structure of these rocks may be ascribed to crystallization under stress. Microstructures are described that are from long-duration experimental runs, (5 months at high temperature and in the presence of water) which go some way towards simulating these effects.  相似文献   

3.
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a “propagating damage front” and the evolution of a third-body layer.  相似文献   

4.
The surface ruptures produced by the 2016 MW7.8 Karkoura earthquake, New Zealand are distributed in a belt with~170km long and~35km wide, trending generally in the NE-SW direction. There are at least 12 faults on which meter-scale displacements are identified and they were formed across two distinct seismotectonic provinces with fundamental different characteristics(Hamling et al., 2017; Litchfield et al., 2017). Although the trending directions of the seismic surface ruptures vary greatly at different locations, the ruptured faults can be generally divided into two groups with the NE to NEE direction and the NNW to N direction, respectively. The faults in the NNW-near NS direction are nearly parallel with 40~50km apart and featured by reverse movement with the maximum displacement of 5~6m. The faults in the NE-NNE direction, with the maximum of 25~30km apart are not continuous and featured by the dextral strike slip with the largest displacement of 10~12m. Even if some faults along the NE-NEE direction are end to end connected, their strikes differ by about 30°. The combination styles of the strike-slip fault surface ruptures along the NE-NEE direction can be merged into 3 categories, including en-echelon, bifurcation and parallel patterns. The scales of the fault surface ruptures with the same structural style could be obviously different in different areas, which results in significant changes in the widths of deformation zone, from tens of meters to hundreds of meters. En-echelon distributed surface rupture(section)can appear as a combination belt of meter-scale to dozens of meter-scale shear fracture with bulge and compressional shear fractures, and also can be characterized by the combination of the left-step en-echelon tensile shear fractures with a length of more than one hundred meters. The step-overs between surface rupture sections are clearly different in sizes, which can be dozens of meters, hundreds of meters to several kilometers. The spacing between parallel surface ruptures can be several meters, dozens of meters to several kilometers. Besides, as one of the prominent characteristics, the seismic surface ruptures caused by the Karkoura earthquake broke through the known distribution pattern of active faults. The surface ruptures can occur either on the previously thought inactive or unmapped faults, or break through the distribution range of previously realized active faults in the striking or lateral direction. The basic features about the distribution and widths of the surface ruptures induced by the 2016 MW7.8 Karkoura earthquake, New Zealand presented in this paper might be helpful for understanding some seismic problems such as complex corresponding relationship between the active faults and the deep seismogenic structure, and the necessary measurements for engineering crossing active faults.  相似文献   

5.
This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaojiaqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243° or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coefficient of around 0.6 to very low steady-state friction coefficient of 0.1-0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.  相似文献   

6.
鲁西北西向断裂的断层泥及其地震地质意义   总被引:2,自引:1,他引:2       下载免费PDF全文
王华林  晁洪太 《地震地质》1992,14(3):265-274,T001
对鲁西北西向断裂的断层泥进行了较系统的研究。通过对断层泥的宏观特征、断层泥中石英碎砾的表面结构特征和断层泥的成熟度的研究,确定了断裂活动的地质时代、运动方式、破裂形式和活动度,并对断层泥的地震地质意义进行了讨论  相似文献   

7.
Abstract Mineralogical and geochemical studies on the fault rocks from the Nojima–Hirabayashi borehole, south-west Japan, are performed to clarify the alteration and mass transfer in the Nojima Fault Zone at shallow depths. A complete sequence from the hornblende–biotite granodiorite protolith to the fault core can be observed without serious disorganization by surface weathering. The parts deeper than 426.2 m are in the fault zone where rocks have suffered fault-related deformation and alteration. Characteristic alteration minerals in the fault zone are smectite, zeolites (laumontite, stilbite), and carbonate minerals (calcite and siderite). It is inferred that laumontite veins formed at temperatures higher than approximately 100°C during the fault activity. A reverse component in the movement of the Nojima Fault influences the distribution of zeolites. Zeolite is the main sealing mineral in relatively deep parts, whereas carbonate is the main sealing mineral at shallower depths. Several shear zones are recognized in the fault zone. Intense alteration is localized in the gouge zones. Rock chemistry changes in a different manner between different shear zones in the fault zone. The main shear zone (MSZ), which corresponds to the core of the Nojima Fault, shows increased concentration of most elements except Si, Al, Na, and K. However, a lower shear zone (LSZ-2), which is characterized by intense alteration rather than cataclastic deformation, shows a decreased concentration of most elements including Ti and Zr. A simple volume change analysis based on Ti and Zr immobility, commonly used to examine the changes in fault rock chemistry, cannot account fully for the different behaviors of Ti and Zr among the two gouge zones.  相似文献   

8.
ZHOU Yong-sheng 《地震地质》2019,41(5):1266-1272
Paleo-seismic and fault activity are hard to distinguish in host rock areas compared with soft sedimentary segments of fault. However, fault frictional experiments could obtain the conditions of stable and unstable slide, as well as the microstructures of fault gouge, which offer some identification marks between stick-slip and creep of fault. We summarized geological and rock mechanical distinction evidence between stick-slip and creep in host rock segments of fault, and analyzed the physical mechanisms which controlled the behavior of stick-slip and creep. The chemical composition of fault gouge is most important to control stick-slip and creep. Gouge composed by weak minerals, such as clay mineral, has velocity weakening behavior, which causes stable slide of fault. Gouge with rock-forming minerals, such as calcite, quartz, feldspar, pyroxene, has stick-slip behavior under condition of focal depth. To the gouge with same chemical composition, the deformation mechanism controls the frictional slip. It is essential condition to stick slip for brittle fracture companied by dilatation, but creep is controlled by compaction and cataclasis as well as ductile shear with foliation and small fold. However, under fluid conditions, pressure solution which healed the fractures and caused strength recovery of fault, is the original reason of unstable slide, and also resulted in locking of fault with high pore pressure in core of fault zone. Contrast with that, rock-forming minerals altered to phyllosilicates in the gouges by fluid flow through degenerative reaction and hydrolysis reaction, which produced low friction fault and transformations to creep. The creep process progressively developed several wide shear zones including of R, Y, T, P shear plane that comprise gouge zones embedded into wide damage zones, which caused small earthquake distributed along wide fault zones with focal mechanism covered by normal fault, strike-slip fault and reverse fault. However, the stick-slip produced mirror-like slide surfaces with very narrow gouges along R shear plane and Y shear plane, which caused small earthquake distributed along narrow fault zones with single kind of focal mechanism.  相似文献   

9.
断层岩,尤其是断层泥的磁性异常近年来被研究人员广泛关注,但关于其磁性异常的形成原因尚没有统一的解释.海原断裂是青藏高原东北缘一条重要的走滑断裂,前期研究发现海原断裂带景泰段出露有数十米至上百米的断层岩,是理想的研究材料.本研究选取海原断裂带景泰段老虎山山前一个断层岩剖面作为研究对象,拟通过测量断层岩的磁化率(χ)、非磁滞剩磁(ARM)、饱和等温剩磁(SIRM)、等温剩磁(IRM)以及磁化率随温度变化曲线(χ-T曲线)等磁学参数并结合粒度、碳含量、X射线衍射(XRD)等分析方法来探究海原断裂带老虎山段不同颜色断层岩的磁性特征及其形成机制.磁学研究显示黑色、红色及杂色断层泥相较于围岩和破碎带显示了低磁性,尤其是黑色断层泥,其磁化率值均小于10×10~(-8 )m~3·kg~(-1).碳含量及矿物相分析结果指示黑色断层泥与断裂带附近石炭系煤层具有相似的矿物相组成,结合相似的χ-T曲线推断石炭系煤层为黑色断层泥的母岩.石炭系煤层经断层活动卷入断层,在断层强烈剪切摩擦作用下不断细化,形成伊利石等黏土矿物,并促使一部分顺磁性含铁硅酸盐矿物或其他含铁矿物发生化学变化形成亚铁磁性矿物,使得黑色断层泥的磁化率较其母岩石炭系煤层有一定升高.通过黑色断层泥的铁磁性磁化率结合χ-T曲线计算获得断层泥所经历的最高温度约为420℃,不超过450℃.老虎山段厚层碳质断层泥的存在为该地区发现的浅层蠕滑现象提供了一种解释.  相似文献   

10.
We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25–30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the ‘principal slip zone’ (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white ‘rock-flour’ formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in oblique-normal slip. The mechanical analysis of this rupture-zone is presented in Part II (Heesakkers et al., Earthquake Rupture at Focal Depth, Part II: Mechanics of the 2004 M2.2 Earthquake Along the Pretorius Fault, TauTona mine, South Africa 2011, this volume).  相似文献   

11.
Abstract The internal structures of the Nojima Fault, south-west Japan, are examined from mesoscopic observations of continuous core samples from the Hirabayashi Geological Survey of Japan (GSJ) drilling. The drilling penetrated the central part of the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake) ( M 7.2). It intersected a 0.3 m-thick layer of fault gouge, which is presumed to constitute the fault core (defined as a narrow zone of extremely concentrated deformation) of the Nojima Fault Zone. The rocks obtained from the Hirabayashi GSJ drilling were divided into five types based on the intensities of deformation and alteration: host rock, weakly deformed and altered granodiorite, fault breccia, cataclasite, and fault gouge. Weakly deformed and altered granodiorite is distributed widely in the fault zone. Fault breccia appears mostly just above the fault core. Cataclasite is distributed mainly in a narrow (≈1 m wide) zone in between the fault core and a smaller gouge zone encountered lower down from the drilling. Fault gouge in the fault core is divided into three types based on their color and textures. From their cross-cutting relationships and vein development, the lowest fault gouge in the fault core is judged to be newer than the other two. The fault zone characterized by the deformation and alteration is assumed to be deeper than 426.2 m and its net thickness is > 46.5 m. The fault rocks in the hanging wall (above the fault core) are deformed and altered more intensely than those in the footwall (below the fault core). Furthermore, the intensities of deformation and alteration increase progressively towards the fault core in the hanging wall, but not in the footwall. The difference in the fault rock distribution between the hanging wall and the footwall might be related to the offset of the Nojima Fault and/or the asymmetrical ground motion during earthquakes.  相似文献   

12.
Beijing plain area has been always characterized by the tectonic subsidence movement since the Pliocene. Influenced and affected by the extensional tectonic environment, tensional normal faulting occurred on the buried NE-trending faults in this area, forming the "two uplifts and one sag" tectonic pattern. Since Quaternary, the Neocathaysian stress field caused the NW-directed tensional shear faulting, and two groups of active faults are developed. The NE-trending active faults include three major faults, namely, from west to east, the Huangzhuang-Gaoliying Fault, Shunyi Fault and Xiadian Fault. The NW-trending active faults include the Nankou-Sunke Fault, which strikes in the direction of NW320°~330°, with a total length of about 50km in the Beijing area. The northwestern segment of the fault dips SW, forming a NW-directed collapse zone, which controls the NW-directed Machikou Quaternary depression. The thickness of the Quaternary is more than 600 meters; the southeastern segment of the fault dips NE, with a small vertical throw between the two walls of the fault. Huangzhuang-Gaoliying Fault is a discontinuous buried active fault, a boundary line between the Beijing sag and Xishan tectonic uplift. In the Beijing area, it has a total length of 110km, striking NE, dipping SE, with a dip angle of about 50~80 degrees. It is a normal fault, with the maximum fault throw of more than 1 000m since the Tertiary. The fault was formed in the last phase of Yanshan movement and controls the Cretaceous, Paleogene, Neogene and Quaternary sediments.There are four holes drilled at the junction between Nankou-Sunhe Fault and Huangzhuang-Gaoliying Fault in Beijing area. The geographic coordinates of ZK17 is 40°5'51"N, 116°25'40"E, the hole depth is 416.6 meters. The geographic coordinates of ZK18 is 40°5'16"N, 116°25'32"E, the hole depth is 247.6 meters. The geographic coordinates of ZK19 is 40°5'32"N, 116°26'51"E, the hole depth is 500.9 meters. The geographic coordinates of ZK20 is 40°4'27"N, 116°26'30"E, the hole depth is 308.2 meters. The total number of paleomagnetism samples is 687, and 460 of them are selected for thermal demagnetization. Based on the magnetostratigraphic study and analysis on the characteristics of sedimentary rock assemblage and shallow dating data, Quaternary stratigraphic framework of drilling profiles is established. As the sedimentation rate of strata has a good response to the activity of the basin-controlling fault, we discussed the activity of target fault during the Quaternary by studying variations of deposition rate. The results show that the fault block in the junction between the Nankou-Sunhe Fault and the Huangzhuang-Gaoliying Fault is characteristic of obvious differential subsidence. The average deposition rate difference of fault-controlled stratum reflects the control of the neotectonic movement on the sediment distribution of different tectonic units. The activity of Nankou-Sunhe Fault shows the strong-weak alternating pattern from the early Pleistocene to Holocene. In the early Pleistocene the activity intensity of Huangzhuang-Gaoliying Fault is stronger than Nankou-Sunhe Fault. After the early Pleistocene the activity intensity of Nankou-Sunhe Fault is stronger than Huangzhuang-Gaoliying Fault. The activity of the two faults tends to consistent till the Holocene.  相似文献   

13.
断层泥力学性质与含水量关系初探   总被引:4,自引:0,他引:4       下载免费PDF全文
断层泥是影响断层运动的重要地质因素。研究它的力学性质和影响其力学性质的各种因素具有重要的意义。本文利用最近完成的我国五大断裂断层泥基本力学性质的实验结果,分析了含水量对断层泥力学性质的影响。发现断层泥的粘滞系数、杨氏模量、抗压强度和残余体应变均随含水量的增加而明显地减小。断层泥的韧度随含水量的增大而增大。断层泥的体积模量、弹性波速和抗剪强度与含水量的关系不明显。天然断层泥是粘土、断层碎屑和水的混合物,水在其中的作用比水对岩屑或粘土本身的作用更复杂。强调了对天然断层泥进行实验研究的重要性  相似文献   

14.
In this paper, we report friction experiments performed on natural fault gouge samples embedded in granitic rock from drilled core by a project entitled "the Longmenshan Fault Shallow Drilling(LMFD)". Compared with other natural fault gouge, this yellow-greenish gouge(YGG)is dominantly chlorite-rich. The maximum content of chlorite reaches 47%in the YGG. To understand the frictional properties of the YGG sample, experiments were performed at constant confining pressure of 130MPa, with constant pore pressure of 50MPa and at different temperatures from 25℃ to 150℃. The experiments aim to address the frictional behavior of the YGG under shallow, upper crustal pressure, and temperature conditions. Compared with previous studies of natural gouge, our results show that the YGG is stronger and shows a steady state friction coefficient of 0.47~0.51. Comparison with previous studies of natural gouge with similar content of clay minerals indicates a sequence of strengths of different clay minerals:chlorite > illite > smectite. At temperatures up to 150℃ hence depths up to~8km in the Longmenshan region, the YGG shows stable velocity-strengthening behavior at shallow crustal conditions. Combined with the fact of strong direct velocity effect, i.e., (a-b)/a>0.5, faults cutting the present clastic lithology up to~8km depth in the Longmenshan fault zone(LFZ)are likely to offer stable sliding resistance, damping co-seismic rupture propagating from below at not-too-high slip rates. However, as the fault gouge generally has low permeability, co-seismic weakening through thermal pressurization may occur at high slip rates(>0.05m/s), leading to additional hazards.  相似文献   

15.
5.12汶川地震同震地表破裂带在虹口八角-深溪沟一带主要出露于三叠系须家河组的炭质泥岩中,同震断层泥在颜色、结构上与老断层泥和围岩类似。通过开挖探槽,系统采样,采用粉晶X射线衍射定量分析方法,研究了同震地表破裂带的围岩、断层角砾岩、老断层泥和新断层泥的矿物成分特征。同震断层泥的主要成分为石英和黏土矿物,含微量长石和白云石;断层泥的显著特征为高黏土矿物含量,从同震断层泥、老断层泥、角砾岩到围岩黏土矿物含量依次降低,黏土矿物以伊利石和伊蒙混层为主,含微量绿泥石和高岭石,矿物组成明显比地表破裂带北段同震断层泥简单。不同颜色的同震断层泥成分略有不同,黑色断层泥中伊利石含量明显高于白色断层泥;老断层泥中含有方解石和白云石,而同震断层泥不含方解石,只含微量白云石。同震断层泥中伊蒙混层高含量表明,在本次地震错动中有富含K的流体参与。  相似文献   

16.
五峰山-西来桥断裂和丹徒-建山断裂是镇江地区2条主要的NW向断裂,可能与镇江多次破坏性地震相关.文中通过浅层地震勘探和钻孔联合剖面探测方法,对五峰山-西来桥断裂和丹徒-建山断裂的展布特征及第四纪活动性进行了系统研究.五峰山-西来桥断裂在浅层地震剖面上倾向NE,倾角约为60°,断距约为5~9m,以正断活动为主;大路镇场地...  相似文献   

17.
The Dengdengshan and Chijiaciwo faults situate in the northeast flank of Kuantanshan uplift at the eastern terminal of Altyn Tagh fault zone, striking northwest as a whole and extending 19 kilometers and 6.5 kilometers for the Dengdengshan and Chijiaciwo Fault, respectively. Based on satellite image interpretation, trenching, faulted geomorphology surveying and samples dating etc., we researched the new active characteristics of the faults. Three-levels of geomorphic surfaces, i.e. the erosion rock platform, terrace I and terrace Ⅱ, could be found in the northeast side of Kuantanshan Mountain. The Dengdengshan Fault dislocated all geomorphic surfaces except terrace I, and the general height of scarp is about 1.5 meters, with the maximum reaching 2.6 meters. Three paleoseismic events are determined since late Pleistocene through trenching, and the total displacement of three events is about 2.7 meters, the average vertical dislocation of each event changed from 0.5 to 1.2 meters. By collecting age samples and dating, the event Ⅰ occurred about 5ka BP, event Ⅱ occurred about 20ka BP, and event Ⅲ occurred about 35ka BP. The recurrence interval is about 15ka BP; and the vertical slip rate since the late Pleistocene is about 0.04mm/a. The Chijiaciwo Fault, however, dislocated all three geomorphic surfaces, and the general scarp height is about 2.0 meters with the maximum up to 4.0 meters. Three paleoseismic events are determined since late Pleistocene through trenching, and the total displacement of three events is about 3.25 meters, the average vertical dislocation of each event changed from 0.75 to 1.5 meters, and the vertical slip rate since the late Pleistocene is about 0.06mm/a. Although the age constraint of paleoearthquakes on Chijiaciwo Fault is not as good as that of Dengdengshan Fault, the latest event on Chijiaciwo Fault is later than Dengdengshan Fault's. Furthermore, we infer that the recurrence interval of Chijiaciwo Fault is 15ka BP, which is close to that of Dengdengshan Fault. The latest event on Chijiaciwo Fault is later than the Dengdengshan Fault's, and the vertical displacement and the slip rate of a single event in late Quaternary are both larger than that of Dengdengshan Fault. Additionally, a 5-kilometer-long discontinuity segment exists between these two faults and is covered by Quaternary alluvial sand gravel. All these indicate that the activity of the Chijiaciwo Fault and Dengdengshan Fault has obvious segmentation feature. The size of Chijiaciwo Fault and Dengdengshan Fault are small, and the vertical slip rate of 0.04~0.06mm/a is far smaller than that of Qilianshan Fault and the NW-striking faults in Jiuxi Basin. All these indeicate that the tectonic deformation of this region is mainly concentrated on Hexi Corrider and the interior of Tibet Plateau, while the activties of Chijiaciwo and Dengdengshan faults are characterized by slow slip rate, long recurrence interval(more than 10ka)and slow tectonic deformation.  相似文献   

18.
The mechanisms of finite brittle strain   总被引:1,自引:0,他引:1  
  相似文献   

19.
Did the Altyn Tagh fault extend beyond the Tibetan Plateau?   总被引:2,自引:0,他引:2  
The pre-Miocene northeastern termination of Altyn Tagh fault is a critical outstanding problem for understanding the mechanics of Cenozoic deformation resultant from the Indo-Asian collision and mechanisms of Tibetan Plateau formation. Structures beyond the widely accepted NE end of the Altyn Tagh fault, near the town of Yumen, are needed in order to accommodate strike-slip deformation related to plate-like lateral extrusion tectonics, but structures with the necessary slip magnitudes and histories have not been identified. We report on a series of newly recognized and documented E to ENE-striking faults within the Alxa block, NE of the Tibetan Plateau, that are visible on remotely sensed images and confirmed by field studies. These structures are demonstrably left-lateral faults based on offset geology and kinematic indicators such as striae and s-c fabrics in fault gouge. The faults have post-Cretaceous offsets of at least tens to possibly > 150 km, but limited post-Miocene displacement, constrained by offset sedimentary basins. These characteristics suggest that strike-slip faults of the Alxa region have a similar structural history as the central-eastern Altyn Tagh fault and can provide a mechanism for accommodating Oligocene-Early Miocene extrusion along the Altyn Tagh fault.  相似文献   

20.
A systematical study is made on the characteristics of fault gouge from NW-trending faults in western Shandong.The macroscopic features of the fault gouge zones were investigated.From the data on surface structure of quartz fragments from the fault gouge and its maturity,the relative age,the movement mode,the rupture pattern,and the activities of the NW-trending faults are determined.Moreover,their seismogeological significance and some problems in study of fault gouge are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号