首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
郭伟  林贤  胡圣虹 《地球科学》2020,45(4):1362-1374
独立封存的单个流体包裹体,能够准确地反演被捕获时期的流体信息.激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)是单个流体包裹体微区分析的重要手段,展现了原位、实时、高空间分辨率、高灵敏度、高精密度、低检出限、多元素同时检测的优点.单个流体包裹体组成信息的LA-ICP-MS测定技术,在单个流体包裹体选取、激光剥蚀采样方式、气溶胶传输与电离、质谱瞬时信号采集效率、定量校准与内标元素准确测定等方面逐步突破,且该技术应用于成矿元素来源及分配、成矿流体来源及特征、建立成矿模式等方面的研究广泛.因此提高单个流体包裹体分析成功率、降低小体积流体包裹体元素检出限、测定矿石矿物流体包裹体成分等成为该分析技术亟待解决的问题.   相似文献   

2.
<正>流体成矿作用研究是判定矿床形成机制和探索矿床形成过程中成矿元素及成矿介质的来源、运移、演化及富集保存的主要内容之一。而流体包裹体是流体成矿作用研究的主要对象之一,单个流体包裹体的研究、尤其是单个流体包裹体的成矿元素含量的研究一直是流体成矿作用研究的难点。目前有LA ICP MS、SRXRF和PIXE等方法可以获取单个流体包裹体的成分信息,其中单个流体包裹体的体积数据对于后两种方法的准确估值意义重大。  相似文献   

3.
熔体包裹体可以保留岩浆被捕获时的温度、压力及化学组成等信息,为研究岩浆结晶演化过程提供最直接有效的手段;然而由于取样方法、仪器分辨率和灵敏度等技术手段的限制,熔体包裹体研究(尤其是熔体包裹体成分研究方面)发展相对缓慢。本文在简述熔体包裹体特征与分类的基础上,总结了目前熔体包裹体成分研究的主要技术手段,包括技术特点、适用范围及样品制备等;详细介绍单个熔体包裹体激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)原位分析技术(原理、优缺点、定量方法等),并重点阐述分析过程中可能产生的元素分馏、基体效应及激光剥蚀技术要点等。单个熔体包裹体LA-ICP-MS原位分析技术的发展和完善,避免了传统熔体包裹体成分分析技术需加热均一化、样品制备繁琐等缺点,可直接对成分复杂矿物表面100 μm以下以多相形式存在的熔体包裹体进行整体分析,数据精确度可与电子探针分析和二次离子质谱相媲美,增加了样品中可分析熔体包裹体数量,更全面地反映岩浆演化信息,省时、高效、准确,极大地推动了熔体包裹体研究的发展。近年来,国内外单个熔体包裹体LA-ICP-MS原位分析技术应用于地质学和矿床学领域,在地球深部岩浆过程及岩浆热液矿床成矿理论等方面取得了重要成果。随着激光、质谱等设备的发展及定量方法完善,单个熔体包裹体LA-ICP-MS分析的准确性将进一步提高,同时单个熔体包裹体同位素原位分析技术的发展和应用将再次为熔体包裹体研究带来革命性进展。  相似文献   

4.
李阳  邹灏  刘行  蒋修未  李蝶 《岩矿测试》2020,39(2):300-310
近年来激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)应用于单个流体包裹体成分定量分析已成为研究流体包裹体的最佳手段之一。该实验过程和数据处理比较复杂,目前国内外采用的数据分析软件为一款基于MATLAB的SILLS软件,该软件主要是对矿物(锆石)、流体包裹体以及熔体包裹体LA-ICP-MS分析结果进行处理。本文以萤石流体包裹体LA-ICP-MS分析为例,阐述了样品制备与流体包裹体的优选方法,对流体包裹体片厚度以及单个流体包裹体的选取要求作了详细描述,对仪器参数设置、内外标样选取和剥蚀方法等进行了说明。基于SILLS软件采用尖峰消除的方法对待处理数据进行校正,对不同种类型的波峰进行峰宽的选取。在元素比值校正和等效盐度计算过程中,由于被测样品是萤石,Ca元素具有较高的背景值,选择以Na作为流体包裹体的内标元素,以Ca作为寄主矿物的内标元素对寄主矿物浓度进行计算,同时提出以电价平衡代替质量平衡进行等效盐度计算。以上方案提高了LA-ICP-MS分析单个萤石流体包裹体的准确性,有助于解释成矿流体来源和矿床成因等问题。  相似文献   

5.
李冰 《岩矿测试》2007,26(3):208
内容简介:本书全面介绍了电感耦合等离子体质谱(ICP—MS)的仪器结构和基本原理,以四极杆ICP—MS为主,同时对近年来发展的其他类型的ICP—MS仪器进行了简要介绍。以地质应用为主,介绍了几种痕量超痕量元素分析方法及应用。全书共分12章:绪论,包括ICP—MS的起源、现状与发展趋势;ICP—OMS仪器结构和基本原理;ICP—MS分析性能与基本概念;扇形磁场等离子体质谱仪;飞行时间等离子体质谱;激光剥蚀电感耦合等离子体质谱;ICP—MS中的干扰;常用的地质样品处理方法;地质样品中痕量超痕量元素分析;铂族元素分析;同位素比值分析;ICP—MS联用技术在形态分析中的应用。  相似文献   

6.
《岩矿测试》2007,26(1):12-12
内容简介:本书全面介绍了电感耦合等离子体质谱(ICP—MS)的仪器结构和基本原理,以四极杆ICP—MS为主,同时对近年来发展的其他类型的ICP—MS仪器进行了简要介绍。以地质应用为主,介绍了几种痕量超痕量元素分析方法及应用。全书共分12章:绪论,包括ICP—MS的起源、现状与发展趋势;ICP—OMS仪器结构和基本原理;ICP—MS分析性能与基本概念;扇形磁场等离子体质谱仪;飞行时间等离子体质谱;激光剥蚀电感耦合等离子体质谱;ICP—MS中的干扰;常用的地质样品处理方法;地质样品中痕量超痕量元素分析;铂族元素分析;同位素比值分析;ICP—MS联用技术在形态分析中的应用。  相似文献   

7.
李冰 《岩矿测试》2006,25(2):118-118
本书全面介绍了电感耦合等离子体质谱(ICP—MS)的仪器结构和基本原理,以四极杆ICP—MS为主,同时对近年来发展的其他类型的ICP—MS仪器进行了简要介绍。以地质应用为主,介绍了几种痕量超痕量元素分析方法及应用。全书共分12章:绪论,包括ICP—MS的起源、现状与发展趋势;ICP—QMS仪器结构和基本原理;ICP—MS分析性能与基本概念;扇形磁场等离子体质谱仪;飞行时间等离子体质谱;激光剥蚀电感耦合等离子体质谱;ICP—MS中的干扰;常用的地质样品处理方法;地质样品中痕量超痕量元素分析;铂族元素分析;同位素比值分析;ICP—MS联用技术在形态分析中的应用。  相似文献   

8.
定量地测量成矿流体中成矿元素的含量对于解决矿床成因和探讨成矿流体的演化有着十分重要的意义。目前国际上普遍采用单个包裹体激光显微探针拉曼光谱法、包裹体显微光谱分析法和包裹体群的化学成份分析。前两种方法可以对包裹体(或单个包裹体)中的气体、液体和固体进行定量分析,在国外发展比较迅速,我国还几乎是空白,个别学者作过尝试,但由于分析标准和仪器水平等  相似文献   

9.
单个流体包裹体成分LA-ICP-MS分析在精准示踪成矿物质来源和精细刻画成矿过程方面具有独特优势,但已有研究主要聚焦于透明的脉石矿物中的流体包裹体,对用于矿石矿物较少,二者之间有何异同特别是谁更能代表成矿流体组成目前研究薄弱。闪锌矿是岩浆热液矿床和MVT型矿床中常见的矿石矿物,其通常发育流体包裹体并在透射光下具有透明-半透明特征,是研究流体包裹体较为理想的矿石矿物。文章选择南岭新田岭钨矿硫化物阶段的闪锌矿及共生石英为研究对象,开展流体包裹体成分LA-ICP-MS对比分析。分析结果显示,闪锌矿和石英中的流体包裹体组成存在较大差异,前者异常富Cu、Ag和Sn等金属元素,后者富Li、B、Na、K、Rb、Sr、Cs和Pb等元素。结合闪锌矿本身微量元素特征,文章认为元素Cu、Ag和Sn的超常富集与其从寄主矿物扩散进入流体包裹体有关。在基于大离子亲石元素的流体成因类型判别图中,闪锌矿和石英中的流体包裹体组成均能有效示踪成矿流体来源,但后者示踪效果更好。总体而言,共生石英中流体包裹体组成可能更能代表成矿流体组成,闪锌矿因其莫氏硬度较低、金属元素含量高等原因,元素易发生后期扩散/改变,流体包裹体组成可能不能代表真实流体信息。在研究矿石矿物流体包裹体时,需谨慎对待某些元素的超常富集。综合研究脉石矿物流体包裹体和矿石矿物本身元素组成是成矿流体研究更准确的手段。  相似文献   

10.
单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用   总被引:3,自引:0,他引:3  
流体对于热液矿床成矿过程起着十分重要的作用,而古成矿流体最直接的代表是流体包裹体,流体包裹体研究是了解与成矿有关的一系列问题的重要钥匙。单个流体包裹体成分LA-ICP-MS分析是了解成矿流体成分特征的最重要手段之一。文章简要介绍了单个流体包裹体成分LA_ICP_MS分析技术及待测样品选取等方面的问题,重点归纳了流体包裹体成分LA-ICP-MS分析在矿床学中的主要应用,如成矿流体的特征、成矿流体的来源、成矿流体演化历程、诱发金属沉淀的原因、岩浆_热液矿床中金属的来源、元素在不同相中的分配、模拟计算。最后为LA-ICP-MS对单个流体包裹体成分测试的前景做了简单的展望。  相似文献   

11.
流体包裹体气液成分原位测定的新进展   总被引:4,自引:1,他引:3  
李淑玲 《岩矿测试》1999,18(1):72-76
综述了近年来流体包裹体原位测定的分析方法,其中较为常用的方法为激光拉曼光谱法,质子探针法等。激光烧蚀法是最近发展起来的一种打开单个包裹体的新方法。该方法与其它技术相结合对测定流体包裹有一定的发展前景。  相似文献   

12.
We report homogeneity tests on large natural apatite crystals to evaluate their potential as U reference materials for apatite fission‐track (AFT) thermochronology by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS). The homogeneity tests include the measurements of major element concentrations by electron probe microanalysis (EPMA), whereas for U concentration, isotope dilution (ID) ICP‐MS and laser ablation (LA) ICP‐MS were employed. Two apatite crystals are potential reference materials for LA‐ICP‐MS analysis: a 1 cm3 fraction of a Durango crystal (7.5 μg g?1 U) and a 1 cm3 Mud Tank crystal (6.9 μg g?1 U). The relative standard deviation (1 RSD) of the U concentration determined by ID‐ICP‐MS of both apatite crystals was ≤ 1.5%, whereas 1 RSD for the LA‐ICP‐MS results was better than 4%, providing sufficient homogeneity for fission‐track dating. The results on the U homogeneity for two different apatite samples are an important step towards establishing in situ dating routines for AFT analysis by LA‐ICP‐MS.  相似文献   

13.
Seven ilmenite (FeTiO3) megacrysts derived from alnöite pipes (Island of Malaita, Solomon Islands) were characterised for their major and trace element compositions in relation to their potential use as secondary reference materials for in situ microanalysis. Abundances of thirteen trace elements obtained by laser ablation ICP‐MS analyses (using the NIST SRM 610 glass reference material) were compared with those determined by solution‐mode ICP‐MS measurements, and these indicated good agreement for most elements. The accuracy of the LA‐ICP‐MS protocol employed here was also assessed by repeated analysis of MPI‐DING international glass reference materials ML3B‐G and KL2‐G. Several of the Malaitan ilmenite megacrysts exhibited discrepancies between laser ablation and solution‐mode ICP‐MS analyses, primarily attributed to the presence of a titano‐magnetite exsolution phase (at the grain boundaries), which were incorporated solely in the solution‐mode runs. Element abundances obtained by LA‐ICP‐MS for three of the ilmenite megacrysts (CRN63E, CRN63H and CRN63K) investigated here had RSD (2s) values of < 20% and therefore can be considered as working values for reference purposes during routine LA‐ICP‐MS analyses of ilmenite.  相似文献   

14.
Compared with solution ICP‐MS, LA‐ICP‐MS studies have thus far reported comparatively few external reference data for accuracy estimates of experiments. This is largely the result of a paucity of available reference materials of natural composition. Here, we report an evaluation of natural glass (obsidian) as an inexpensive and widely available external reference material. The homogeneity of over forty elements in six different obsidian samples was assessed by LA‐ICP‐MS. Accuracy was tested with two obsidian samples that were fully characterised by electron probe microanalysis and solution ICP‐MS. Laser ablation experiments were performed with a variety of ablation parameters (fluence, spot sizes, ablation repetition rates) and calibration approaches (natural vs. synthetic reference materials, and different internal standard elements) to determine the best practice for obsidian analysis. Furthermore, the samples were analysed using two different laser wavelengths (193 nm and 213 nm) to compare the effect of potential ablation‐related phenomena (e.g., fractionation). Our data indicate that ablation with fluences larger than 6 J cm?2 and repetition rates of 5 or 10 Hz resulted in the most accurate results. Furthermore, synthetic NIST SRM 611 and 612 glasses worked better as reference materials compared with lower SiO2 content reference materials (e.g., BHVO‐2G or GOR128‐G). The very similar SiO2 content of the NIST SRM glasses and obsidian (i.e., matrix and compositional match) seems to be the first‐order control on the ablation behaviour and, hence, the accuracy of the data. The use of different internal standard elements for the quantification of the obsidian data showed that Si and Na yielded accurate results for most elements. Nevertheless, for the analysis of samples with high SiO2 concentrations, it is recommended to use Si as the internal standard because it can be more precisely determined by electron probe microanalysis. At the scale of typical LA analyses, the six obsidian samples proved to be surprisingly homogenous. Analyses with a spot size of 80 μm resulted in relative standard deviations (% RSD) better than 8% for all but the most depleted elements (e.g., Sc, V, Ni, Cr, Cu, Cd) in these evolved glasses. The combined characteristics render obsidian a suitable, inexpensive and widely available, external quality‐control material in LA‐ICP‐MS analysis for many applications. Moreover, obsidian glass is suited for tuning purposes, and well‐characterised obsidian could even be used as a matrix‐matched reference material for a considerable number of elements in studies of samples with high SiO2 contents.  相似文献   

15.
Research in 2006 and 2007 dealing with laser ablation‐(multicollector)‐inductively coupled plasma‐mass spectrometry, LA‐(MC)‐ICP‐MS, involved studies concerned with optimising the technique itself, as well as applying the method to a variety of problems in the Earth sciences. The causes of elemental and isotopic fractionation produced during laser ablation continues to be of considerable interest, with evidence mounting that processes occurring both at the ablation site and in the argon plasma of the ICP are culpable. There is growing excitement in the use of femtosecond lasers for LA‐(MC)‐ICP‐MS, with the hope that they reduce or eliminate melting and non‐congruent volatilisation at the ablation site and thus approach stoichiometric sampling. Ablation chamber design emerged as a serious concern, particularly with respect to achieving the rapid washout needed for fine‐scale compositional mapping of geological objects. LA‐MC‐ICP‐MS provided data for a wide range of isotopic systems, especially hafnium, but also B, S, Mg, Cu, Fe, Sr, Nd, Pb and U. Measurement uncertainties in LA‐ICP‐MS were discussed by several researchers, and are critically reviewed here ‐ total uncertainties for trace element concentration measurements of silicates including errors on the calibration values of common reference materials are ~10% (95% confidence limits), though the precision of individual spot measurements (50 to 100 μm) is much better, ~1% RSD, using a 193 nm laser and a sector field‐ICP‐MS. LA‐ICP‐MS U‐Pb ages for zircon and other U‐rich accessory phases are claimed by most geoanalysts to have 2s uncertainties of ~0.7 and 1.3% respectively but the actual accuracy of the method is probably only as good as ~2% (2s), when uncertainties associated with laser‐induced Pb/U fractionation are included.  相似文献   

16.
Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) was examined as a tool for measuring isotopic variation as a function of ablation depth in unpolished zircon from an Archaean metasediment specimen. This technique was able to identify micrometre‐thin (> 3 μm) isotopically distinct mineral domains characterised by ca. 100 Myr younger 207Pb/206Pb ages associated with 2s age uncertainties as low ~ 0.2%, as well as elevated U content relative to grain interiors (up to an order of magnitude). Our calculated drilling rate suggests that each laser pulse excavated depths of ~ 0.06 μm. Ages resolved through the LA‐ICP‐MS methods overlap the 2s uncertainties of 207Pb/206Pb ages measured using SIMS depth profiling on the same zircon population. The rims were further evinced by the detection of relative enrichment (> 3 orders of magnitude) in REE in the outermost micrometres of the same zircon, measured using a different and independent LA‐ICP‐MS depth profiling technique. We propose a LA‐ICP‐MS U–Pb technique capable of quickly identifying and quantifying rims, which are indication of late, yet geologically significant, fluid events that are otherwise undefined.  相似文献   

17.
Trace element concentrations in gold grains from various geological units in South Africa were measured in situ by field emission‐electron probe microanalysis (FE‐EPMA), laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and synchrotron micro X‐ray fluorescence spectroscopy (SR‐μ‐XRF). This study assesses the accuracy, precision and detection limits of these mostly non‐destructive analytical methods using certified reference materials and discusses their application in natural sample measurement. FE‐EPMA point analyses yielded reproducible and discernible concentrations for Au and trace concentrations of S, Cu, Ti, Hg, Fe and Ni, with detection limits well below the actual concentrations in the gold. LA‐ICP‐MS analyses required larger gold particles (> 60 μm) to avoid contamination during measurement. Elements that measured above detection limits included Ag, Cu, Ti, Fe, Pt, Pd, Mn, Cr, Ni, Sn, Hg, Pb, As and Te, which can be used for geochemical characterisation and gold fingerprinting. Although LA‐ICP‐MS measurements had lower detection limits, precision was lower than FE‐EPMA and SR‐μ‐XRF. The higher variability in absolute values measured by LA‐ICP‐MS, possibly due to micro‐inclusions, had to be critically assessed. Non‐destructive point analyses of gold alloys by SR‐μ‐XRF revealed Ag, Fe, Cu, Ni, Pb, Ti, Sb, U, Cr, Co, As, Y and Zr in the various gold samples. Detection limits were mostly lower than those for elements measured by FE‐EPMA, but higher than those for elements measured by LA‐ICP‐MS.  相似文献   

18.
单个流体包裹体LA-ICPMS定量分析技术及其应用(英文)   总被引:7,自引:0,他引:7  
ThomasULRICH 《地学前缘》2003,10(2):379-393
对于不同类型的地球化学勘查样品 ,运用恰当的分析方法处理 ,是成功地发现矿床的关键。激光熔融电感耦合等离子质谱分析 ,即LA ICPMS ,是功能最强的多元素分析技术之一。该方法获得数据快捷 ,样品制备简单 ,其高灵敏度为很多主元素和微量元素 (包括铂族元素、稀土元素、高场强元素和多种成矿示踪元素 )提供了低检测限 ,正在并将要持续为地球化学应用提供新的信息。仪器由ICPMS(四极 ,多接受或磁扇域 )附加激光器 (紫外或红外波长 )而构成。应用于地球科学研究的标准仪器的激光器为具有 2 6 6nm四倍频率的Nd :YAG激光器 ,或者是具有 193nm波长的ArF激态原子激光器。激光器熔融样品 ,并通过运载气体将熔融的样品物质传送到IP ,而不是将样品溶解后 ,通过雾化器和雾化室将样品传输给ICP。这就使我们能够进行微区分析 ,如矿物环带 ,或者矿物中的微小矿物、融体和流体包裹体等。运用外标校对元素比值 ,并结合内标使用 ,可以获得定量测试结果。对于固体熔融物的分析精度一般为 2 %~ 5 %RSD(相对标准误差 ) ,对于流体包裹体则为 10 %~ 30 %RSD。LA ICPMS的一些复杂系统可能引起成分分馏和质量干扰。对于分馏效应 ,可以通过运用产生小粒子的短波长激光器和运用He作为运载气体来减小 ;对于质量干扰 ,则可以通过?  相似文献   

19.
Ilmenite (FeTiO3) is a common accessory mineral and has been used as a powerful petrogenetic indicator in many geological settings. Elemental fractionation and matrix effects in ilmenite (CRN63E‐K) and silicate glass (NIST SRM 610) were investigated using 193 nm ArF excimer nanosecond (ns) laser and 257 nm femtosecond (fs) laser ablation systems coupled to an inductively coupled plasma‐mass spectrometer. The concentration‐normalised 57Fe and 49Ti responses in ilmenite were higher than those in NIST SRM 610 by a factor of 1.8 using fs‐LA. Compared with the 193 nm excimer laser, smaller elemental fractionation was observed using the 257 nm fs laser. When using 193 nm excimer laser ablation, the selected range of the laser energy density had a significant effect on the elemental fractionation in ilmenite. Scanning electron microscopy images of ablation craters and the morphologies of the deposited aerosol materials showed more melting effects and an enlarged particle deposition area around the ablation site of the ns‐LA‐generated crater when compared with those using fs‐LA. The ejected material around the ns crater predominantly consisted of large droplets of resolidified molten material; however, the ejected material around the fs crater consisted of agglomerates of fine particles with ‘rough' shapes. These observations are a result of the different ablation mechanisms for ns‐ and fs‐LAs. Non‐matrix‐matched calibration was applied for the analysis of ilmenite samples using NIST SRM 610 as a reference material for both 193 nm excimer LA‐ICP‐MS and fs‐LA‐ICP‐MS. Similar analytical results for most elements in ilmenite samples were obtained using both 193 nm excimer LA‐ICP‐MS at a high laser energy density of 12.7 J cm?2 and fs‐LA‐ICP‐MS.  相似文献   

20.
Major and trace element compositions of fifteen silicate rock reference materials have been determined by a combined XRF and laser ablation ICP‐MS (LA‐ICP‐MS) technique on glasses prepared by fusing the sample with a lithium borate flux (sample:flux = 1:3). Advantages of this technique include the ability to measure major and trace element abundances on a single sample using a quick and simple preparation that attacks resistant phases such as zircon without the need for acid dissolution. The method is suitable for a wide variety of bulk compositions including mafic, intermediate and silicic rocks. Abundance‐normalized mass response patterns (the ratio of signal intensity to element concentration) of the LA‐ICP‐MS analyses vary systematically with major element composition, demonstrating the presence of a matrix effect that cannot be compensated by normalisation to a single internal standard element. Increasing the sampling distance between the ICP‐MS cone and the torch reduces the magnitude of this effect, suggesting that a mechanism related to residence time of ablated particles in the plasma may be at least partially responsible for the observed variations in mass response patterns. When using a matrix‐matched calibration, agreement of the LA‐ICP‐MS results with published reference values or those obtained by solution ICP‐MS is 10% relative. Analytical precision based on replicate analyses is typically 5% RSD. Procedural detection limits that include contributions from gas background and flux are 0.01‐0.1 μg g‐1 for the heavy mass trace elements (Rb‐U). Major element analyses by XRF show excellent agreement with results obtained using a conventional heavy element absorbing flux. High quality major and trace element data for silicate rocks can be achieved by a combined XRF and LA‐ICP‐MS analysis of Li2B4O7/LiBO2 fused glasses provided an appropriate matrix‐matched calibration is adopted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号