首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.  相似文献   

2.
Aircraft observations of the atmospheric boundary layer (ABL) over Arctic sea ice were made during non-stationary conditions of cold-air advection with a cloud edge retreating through the study region. The sea-ice concentration, roughness, and ABL stratification varied in space. In the ABL heat budget, 80% of the Eulerian change in time was explained by cold-air advection and 20% by diabatic heating. With the cloud cover and inflow potential temperature profile prescribed as a function of time, the air temperature and near-surface fluxes of heat and momentum were well simulated by the applied two-dimensional mesoscale model. Model sensitivity tests demonstrated that several factors can be active in generating unstable stratification in the ABL over the Arctic sea ice in March. In this case, the upward sensible heat flux resulted from the combined effect of clouds, leads, and cold-air advection. These three factors interacted non-linearly with each other. From the point of view of ABL temperatures, the lead effect was far less important than the cloud effect, which influenced the temperature profiles via cloud-top radiative cooling and radiative heating of the snow surface. The steady-state simulations demonstrated that under overcast skies the evolution towards a deep, well-mixed ABL may take place through the merging of two mixed layers one related to mostly shear-driven surface mixing and the other to buoyancy-driven top-down mixing due to cloud-top radiative cooling.  相似文献   

3.
The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice melt further northward. However, no indication for a substantial impact of the increased heat transport on ice melt in the Central Arctic is found. Most of the heat that is not passed to the atmosphere in the Barents Sea is stored in the Arctic intermediate layer of Atlantic water, which is increasingly pronounced in the twenty first century.  相似文献   

4.
We investigate the sensitivity of the transient climate change to a tidal mixing scheme. The scheme parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography, whereas the standard configuration uses horizontally constant diffusivity. We perform ensemble climate change experiments with two setups of MPIOM/ECHAM5, one setup with the tidal mixing scheme and the second setup with the standard configuration. Analysis of the responses of the transient climate change to CO2 increase reveals that the implementation of tidal mixing leads to a significant reduction of the transient surface warming by 9 %. The weaker surface warming in the tidal run is localized particularly over the Weddell Sea, likely caused by a stronger ocean heat uptake in the Southern Ocean. The analysis of the ocean heat budget reveals that the ocean heat uptake in both experiments is caused by changes in convection and advection. In the upper ocean, heat uptake is caused by reduced convection and enhancement of the Deacon Cell, which appears also in isopycnal coordinates. In the deeper ocean, heat uptake is caused by reduction of convective cooling associated with the circulation polewards of 65°S. Tidal mixing leads to stronger heat uptake in the Southern Ocean by causing stronger changes in advection, namely a stronger increase in the Deacon Cell and a stronger reduction in advective cooling by the circulation polewards of 65°S. Counter-intuitively, the relation between tidal mixing and greater heat storage in the deep ocean is an indirect one, through the influence of tidal mixing on the circulation.  相似文献   

5.
Freshwater (FW) leaves the Arctic Ocean through sea-ice export and the outflow of low-salinity upper ocean water. Whereas the variability of the sea-ice export is known to be mainly caused by changes in the local wind and the thickness of the exported sea ice, the mechanisms that regulate the variability of the liquid FW export are still under investigation. To better understand these mechanisms, we present an analysis of the variability of the liquid FW export from the Arctic Ocean for the period 1950–2007, using a simulation from an energy and mass conserving global ocean–sea ice model, coupled to an Energy Moisture Balance Model of the atmosphere, and forced with daily winds from the NCEP reanalysis. Our results show that the simulated liquid FW exports through the Canadian Arctic Archipelago (CAA) and the Fram Strait lag changes in the large-scale atmospheric circulation over the Arctic by 1 and 6 years, respectively. The variability of the liquid FW exports is caused by changes in the cyclonicity of the atmospheric forcing, which cause a FW redistribution in the Arctic through changes in Ekman transport in the Beaufort Gyre. This in turn causes changes in the sea surface height (SSH) and salinity upstream of the CAA and Fram Strait, which affect the velocity and salinity of the outflow. The SSH changes induced by the large-scale atmospheric circulation are found to explain a large part of the variance of the liquid FW export, while the local wind plays a much smaller role. We also show that during periods of increased liquid FW export from the Arctic, the strength of the simulated Atlantic meridional overturning circulation is reduced and the ocean heat transport into the Arctic is increased. These results are particularly relevant in the context of global warming, as climate simulations predict an increase in the liquid FW export from the Arctic during the twenty-first century.  相似文献   

6.
The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10°C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn.  相似文献   

7.
Variability of the Pacific Ocean is examined in numerical simulations with an ocean general circulation model forced by observed anomalies of surface heat flux, wind stress and turbulent kinetic energy (TKE) over the period 1970-88. The model captures the 1976-77 winter time climate shift in sea surface temperature, as well as its monthly, seasonal and longer term variability as evidenced in regional time series and empirical orthogonal function analyses. Examination of the surface mixed-layer heat budget reveals that the 1976-77 shift was caused by a unique concurrance of sustained heat flux input anomalies and very strong horizontal advection anomalies during a multi-month period preceding the shift in both the central Pacific region (where cooling occurred) and the California coastal region (where warming occurred). In the central Pacific, the warm conditions preceding and the cold conditions following the shift tend to be maintained by anomalous vertical mixing due to increases in the atmospheric momentum flux (TKE input) into the mixed layer (which deepens in the model after the shift) from the early 1970s to the late 1970s and 1980s. Since the ocean model does not contain feedback to the atmosphere and it succeeds in capturing the major features of the 1976-77 shift, it appears that the midlatitude part of the shift was driven by the atmosphere, although effects of midlatitude ocean-atmosphere feedback are still possible. The surface mixed-layer heat budget also reveals that, in the central Pacific, the effects of heat flux input and vertical mixing anomalies are comparable in amplitude while horizontal advection anomalies are roughly half that size. In the California coastal region, in contrast, where wind variability is much weaker than in the central Pacific, horizontal advection and vertical mixing effects on the mixed layer heat budget are only one-quarter the size of typical heat flux input anomalies.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil  相似文献   

8.
A diagnostic study of heat transfer within the lower atmosphere and between the atmosphere and the surface of the Arctic Ocean snow/ice pack during clear-sky conditions is conducted using data from the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. Surface heat budgets computed for four cloudy and four clear periods show that, while the net turbulent heat fluxes at the surface are small during the cloudy periods, during the clear-sky periods they are a considerable source of surface heating, balancing significant portions of the conductive heat fluxes from within the snow/ice pack. Analysis of the dynamics and thermodynamics of the lower atmosphere during the clear-sky periods reveals that a considerable portion of the heat lost to the surface by turbulent heat fluxes is balanced by locally strong heating near the atmospheric boundary-layer (ABL) top due to the interaction of subsiding motions with the strong overlying temperature inversions surmounting the ABL. This heat is then entrained into the ABL and transported to the surface by turbulent mixing, maintained by a combination of vertical wind shear and wave-turbulence interactions. The frequency of stable, clear-sky periods, particularly during the winter, combined with these results, suggests that the downward transfer of heat through the lower atmosphere and into the surface represents an important component of the heat budgets of the lower atmosphere and snow/ice pack over the annual cycle  相似文献   

9.
Although it is well known that sea-ice regions are important components of the Earth's climate system, the exchanges of energy between ocean, ice and atmosphere are not well understood. The majority of past observational and modelling studies of atmosphere-surface interactions over sea-ice regions were primarily concerned with airflow over a single, isolated area of open water. The more realistic situations of multiple polynyas within a sea-ice field and different areal concentrations of sea ice were studied here. Spatial structure of the atmospheric boundary layer in response to this surface was simulated using a high-resolution numerical model. A sea-ice concentration of 80%, typical of the Southern Ocean sea-ice zone, was maintained within a 100-km wide domain. The effects of three polynya characteristics were assessed: their horizontal extent; local concentration of sea ice (LCI); and their arrangement with ice floes. Over polynyas of all sizes distinct plumes of upward heat flux, their width and height closely linked to polynya width, resulted in mixed layers 600 to 1000 m deep over and downwind of the polynyas, their depth increasing with polynya width. Mean surface heat flux (MSHF) increased with size in polynyas less than 30 km wide. The air-to-ice MSHF over the first 10 km of sea-ice downwind of each polynya and the domain-average surface heat flux increased linearly with polynya width. Turbulent kinetic energy plumes occurred over all polynyas, their heights and widths increasing with polynya widths. Downward flux of high momentum air in the plumes caused increased wind speeds over polynyas in the layer from about 300–1000 m above the surface, the depth varying directly with polynya width. MSHFs decreased as LCIs increased. The arrangement of polynyas had relatively little effect on the overall depth of the modified layer but did influence the magnitude and spatial structure of vertical heat transfer. In the two-polynya case the MSHF over the polynyas was larger when they were closer together. Although the MSHF over the sea ice between the polynyas decreased in magnitude as their separation increased, the percentage of the polynya-to-air heat recaptured by this ice floe increased fivefold.  相似文献   

10.
The interannual atmosphere-ocean-sea ice interaction (AOSI) in high northern latitudes is studied with a global atmosphere-ocean-sea ice coupled model system, in which the model components of atmosphere and land surface are from China National Climate Center and that of ocean and sea ice are from LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. A daily flux anomaly correction scheme is employed to couple the atmosphere model and the ocean model with the effect of inhomogenity of sea ice in high latitudes is considered. The coupled model system has been run for 50 yr and the results of the last 30 years are analyzed. After the sea level pressure (SLP), surface air temperature (SAT), sea surface temperature (SST), sea ice concentration (SIC), and sea surface sensible heat flux (SHF) are filtered with a digital filter firstly, their normalized anomalies are used to perform the decomposition of combined complex empirical orthogonal function (CCEOF) and then they are reconstructed with the leading mode. The atmosphere-ocean-sea ice interactions in high northern latitudes during a periodical cycle (approximately 4 yr) are analyzed. It is shown that: (1) When the North Atlantic Oscillation (NAO) is in its positive phase, the southerly anomaly appears in the Greenland Sea, SAT increases, the sea loses less SHF, SST increases and SIC decreases accordingly; when the NAO is in its negative phase, the northerly anomaly appears in the Greenland Sea, SAT decreases, the sea loses more SHF, SST decreases and SIC increases accordingly. There are similar features in the Barents Sea, but the phase of evolution in the Barents Sea is different from that in the Greenland Sea. (2) For an average of multi-years, there is a cold center in the inner part of the Arctic Ocean near the North Pole. When there is an anomaly of low pressure, which is closer to the Pacific Ocean, in the inner part of the Arctic Ocean, anomalies of warm advection appear in the region near the Pacif  相似文献   

11.
Arctic climate change in 21st century CMIP5 simulations with EC-Earth   总被引:4,自引:2,他引:2  
The Arctic climate change is analyzed in an ensemble of future projection simulations performed with the global coupled climate model EC-Earth2.3. EC-Earth simulates the twentieth century Arctic climate relatively well but the Arctic is about 2 K too cold and the sea ice thickness and extent are overestimated. In the twenty-first century, the results show a continuation and strengthening of the Arctic trends observed over the recent decades, which leads to a dramatically changed Arctic climate, especially in the high emission scenario RCP8.5. The annually averaged Arctic mean near-surface temperature increases by 12 K in RCP8.5, with largest warming in the Barents Sea region. The warming is most pronounced in winter and autumn and in the lower atmosphere. The Arctic winter temperature inversion is reduced in all scenarios and disappears in RCP8.5. The Arctic becomes ice free in September in all RCP8.5 simulations after a rapid reduction event without recovery around year 2060. Taking into account the overestimation of ice in the twentieth century, our model results indicate a likely ice-free Arctic in September around 2040. Sea ice reductions are most pronounced in the Barents Sea in all RCPs, which lead to the most dramatic changes in this region. Here, surface heat fluxes are strongly enhanced and the cloudiness is substantially decreased. The meridional heat flux into the Arctic is reduced in the atmosphere but increases in the ocean. This oceanic increase is dominated by an enhanced heat flux into the Barents Sea, which strongly contributes to the large sea ice reduction and surface-air warming in this region. Increased precipitation and river runoff lead to more freshwater input into the Arctic Ocean. However, most of the additional freshwater is stored in the Arctic Ocean while the total Arctic freshwater export only slightly increases.  相似文献   

12.
基于一个全球气-海-冰耦合模式数值模拟结果,对北半球高纬度地区年际尺度的气-海-冰相互作用进行了分析。在所使用的全球气-海-冰耦合模式中,大气环流模式和陆面过程模式来自国家气候中心,海洋环流模式和海冰模式来自中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室。采用一种逐日通量距平耦合方案实现次网格尺度海冰非均匀条件下大气环流模式和海洋环流模式在高纬地区的耦合。只对50 a模拟结果中的后30 a结果进行了分析。在分析中,首先对滤波后的北半球高纬度地区海平面气压、表面大气温度、海表面温度、海冰密集度及海表面感热通量的标准化距平做联合复经验正交函数分解,取第一模进行重建,然后讨论了在一个循环周期(约4 a)中北半球高纬度地区气-海-冰的作用关系。结果表明:(1)当北大西洋涛动处于正位相时,格陵兰海出现南风异常,使表面大气温度升高,海洋失去感热通量减少,海洋表面温度升高,海冰密集度减小;当北大西洋涛动处于负位相时,格陵兰海出现北风异常,使表面大气温度降低,海洋失去感热通量增多,海洋表面温度降低,海冰密集度增加。巴伦支海变化特点与格陵兰海相似,但在时间上并不完全一致。(2)多年平均而言,北冰洋内部靠近极点区域为冷中心。当北冰洋内部为低压异常时,因异常中心偏向太平洋一侧,使北冰洋内部靠近太平洋部分为暖平流异常,靠近大西洋一侧为冷平流异常。伴随着暖、冷平流异常,这两侧分别出现暖异常和冷异常,海表面给大气的感热通量分别偏少和偏多,上述海区海表面温度分别偏高和偏低,海冰密集度分别偏小和偏大。当北冰洋内部为高压异常时特点正好与上述相反。由上述分析结果可知,在海洋、大气年际循环中,大尺度大气环流变率起主导作用,海洋表面温度和海冰密集度变化主要是对大气环流变化的响应。  相似文献   

13.
An ocean–atmosphere–sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5–3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (1) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (2) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N and 65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.  相似文献   

14.
The ocean and sea ice in both polar regions are important reservoirs of freshwater within the climate system. While the response of these reservoirs to future climate change has been studied intensively, the sensitivity of the polar freshwater balance to natural forcing variations during preindustrial times has received less attention. Using an ensemble of transient simulations from 1500 to 2100 AD we put present-day and future states of the polar freshwater balance in the context of low frequency variability of the past five centuries. This is done by focusing on different multi-decadal periods of characteristic external forcing. In the Arctic, freshwater is shifted from the ocean to sea ice during the Maunder Minimum while the total amount of freshwater within the Arctic domain remains unchanged. In contrast, the subsequent Dalton Minimum does not leave an imprint on the slow-reacting reservoirs of the ocean and sea ice, but triggers a drop in the import of freshwater through the atmosphere. During the twentieth and twenty-first century the build-up of freshwater in the Arctic Ocean leads to a strengthening of the liquid export. The Arctic freshwater balance is shifted towards being a large source of freshwater to the North Atlantic ocean. The Antarctic freshwater cycle, on the other hand, appears to be insensitive to preindustrial variations in external forcing. In line with the rising temperature during the industrial era the freshwater budget becomes increasingly unbalanced and strengthens the high latitude’s Southern Ocean as a source of liquid freshwater to lower latitude oceans.  相似文献   

15.
 The sensitivity of the upper ocean thermal balance of an ocean-atmosphere coupled GCM to lateral ocean physics is assessed. Three 40-year simulations are performed using horizontal mixing, isopycnal mixing, and isopycnal mixing plus eddy induced advection. The thermal adjustment of the coupled system is quite different between the simulations, confirming the major role of ocean mixing on the heat balance of climate. The initial adjustment phase of the upper ocean (SST) is used to diagnose the physical mechanisms involved in each parametrisation. When the lateral ocean physics is modified, significant changes of SST are seen, mainly in the southern ocean. A heat budget of the annual mixed layer (defined as the “bowl”) shows that these changes are due to a modified heat transfer between the bowl and the ocean interior. This modified heat intake of the ocean interior is directly due to the modified lateral ocean physics. In isopycnal diffusion, this heat exchange, especially marked at mid-latitudes, is both due to an increased effective surface of diffusion and to the sign of the isopycnal gradients of temperature at the base of the bowl. As this gradient is proportional to the isopycnal gradient of salinity, this confirms the strong role of salinity in the thermal balance of the coupled system. The eddy induced advection also leads to increased exchanges between the bowl and the ocean interior. This is both due to the shape of the bowl and again to the existence of a salinity structure. The lateral ocean physics is shown to be a significant contributor to the exchanges between the diabatic and the adiabatic parts of the ocean. Received: 24 January 2000 / Accepted: 11 September 2000  相似文献   

16.
Substantial reduction in Arctic sea ice in recent decades has intensified air-sea interaction over the Arctic Ocean and has altered atmospheric states in the Arctic and surrounding high-latitude regions. This study has found that the atmospheric responses related to Arctic sea-ice melt in the cold season (October–March) depend on sea-ice fraction and are very sensitive to in situ sea surface temperature (SST) from a series of atmospheric general circulation model (AGCM) simulations in which multiple combinations of SSTs and sea-ice concentrations are prescribed in the Arctic Ocean. It has been found that the amplitude of surface warming over the melted sea-ice region is controlled by concurrent in situ SST even if these simulations are forced by the same sea-ice concentration. Much of the sensitivity of surface warming to in situ SST are related with large changes in surface heat fluxes such as the outgoing long-wave flux in early winter (October–December) and the sensible and latent heat fluxes for the entire cold season. Vertical extension of surface warming and moistening is sensitive to these changes as well; the associated condensational heating modulates a static stability in the lower troposphere. This study also indicates that changes in SST fields in AGCM simulations must be implemented with extra care, especially in the melted sea-ice region in the Arctic. The statistical method introduced in this study for adjusting SSTs in conjunction with a given sea-ice change can help to model the atmospheric response to sea-ice loss more accurately.  相似文献   

17.
Leads and polynyas have a great impact on the energy budget of the polar ocean and atmosphere. Since atmospheric general circulation models are not able to resolve the spatial scales of these inhomogeneities, it is necessary to include the effect of fractional sub-grid scale sea-ice inhomogeneities on climate by a suitable parametrization. In order to do this we have divided each model grid-cell into an ice-covered and an ice-free part. Nevertheless, a numerical model requires effective transports representative for the whole grid-box. A simple procedure would be to use grid averages of the surface parameters for the calculation of the surface fluxes. However, as the surface fluxes are non-linearly dependent on the surface properties, the fluxes over ice and open water should be calculated separately according to the individual surface-layer structure of each surface type. Then these local fluxes should be averaged to obtain representative fluxes. Sensitivity experiments with the Hamburg atmospheric general circulation model ECHAM3 clearly show that a subgrid scale distribution of sea ice is a dominant factor controlling the exchange processes between ocean and atmosphere in the Arctic. The heat and water vapour transports are strongly enhanced leading to a significant warming and moistening of the polar troposphere. This affects the atmospheric circulation in high- and mid-latitudes; e.g. the stationary lows are modified and the transient cyclonic activity over the subpolar oceans is reduced. A pronounced impact of sub-grid scale sea-ice distribution on the model climate can only be obtained when the non-linear behaviour of the surface exchange processes is considered by a proper, physically based, averaging of the surface fluxes. A simple linear averaging of surface parameters is not sufficient. Received: 13 September 1994 / Accepted: 25 July 1995  相似文献   

18.
A primary climate change signal in the central Arctic is the melting of sea ice. This is dependent on the interplay between the atmosphere and the sea ice, which is critically dependent on the exchange of momentum, heat and moisture at the surface. In assessing the realism of climate change scenarios it is vital to know the quality by which these exchanges are modelled in climate simulations. Six state-of-the-art regional-climate models are run for one year in the western Arctic, on a common domain that encompasses the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment ice-drift track. Surface variables, surface fluxes and the vertical structure of the lower troposphere are evaluated using data from the SHEBA experiment. All the models are driven by the same lateral boundary conditions, sea-ice fraction and sea and sea-ice surface temperatures. Surface pressure, near-surface air temperature, specific humidity and wind speed agree well with observations, with a falling degree of accuracy in that order. Wind speeds have systematic biases in some models, by as much as a few metres per second. The surface radiation fluxes are also surprisingly accurate, given the complexity of the problem. The turbulent momentum flux is acceptable, on average, in most models, but the turbulent heat fluxes are, however, mostly unreliable. Their correlation with observed fluxes is, in principle, insignificant, and they accumulate over a year to values an order of magnitude larger than observed. Typical instantaneous errors are easily of the same order of magnitude as the observed net atmospheric heat flux. In the light of the sensitivity of the atmosphere–ice interaction to errors in these fluxes, the ice-melt in climate change scenarios must be viewed with considerable caution.  相似文献   

19.
The pre-melt energy budget of a snowpack on landfast first-year sea ice at a remote site in the Canadian Arctic Archipelago was analyzed. Over a 19-day period, the total heat conducted into the snowpack at the snow–sea-ice interface was the largest single energy transfer to the snowpack, while each of the turbulent heat fluxes removed comparable amounts of energy. The total energy transferred from the snowpack (∑Q?≈??7027?kJ?m?2) should have reduced its temperature; however, the opposite occurred. The snowpack’s temperature at both the 7 and 13?cm depths increased over the pre-melt period. The total change in internal energy and latent heat of the snowpack (ΔUsnowpack), derived from 15-minute changes in the snowpack’s temperature over the pre-melt period, was approximately 672?kJ?m?2. Closure of the energy budget was not achieved for either the daily or the total pre-melt period. The terms of the energy budget were determined independently; thus, the failure to close the energy budget was the result of the accumulation of errors associated with all the terms. However, for snow on first-year sea ice, the parameterization of the salinity and temperature dependence of the “specific heat” of the basal layer of the snowpack was likely the primary source of error. The snowpack plays a central role in the transfer of energy across the ocean–sea-ice–atmosphere interface, but an adequate method for modelling the evolution of snow on Arctic sea ice including the energy budget, which determines the warming rate and subsequent melt rate of the snow, has yet to be developed.  相似文献   

20.
Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for?>?100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater column, wind, and ocean currents in the North Atlantic during the eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号