首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Central Italy is an active tectonic area that has been recently studied by several regional mantle, Pn and SKS, studies which revealed the presence of a strong regional anisotropy. In this paper, we present the first petrophysical results on the only mantle xenoliths from Central Italy, which place new constraints on the upper mantle structures of this region. The Torre Alfina mantle xenoliths are very small in size, from few millimetres to about 1.5 cm. They are mainly dunites and harzburgites, with subordinate lherzolites and wehrlites. Since olivine and spinel are always present, they should have crystallised in the spinel-bearing lherzolite field. Their mineralogical composition is ol+spl±opx±cpx. Both olivines and pyroxenes are present as porphyroclasts and as neoblasts. The xenoliths show different degrees of recrystallization. Geothermobarometry on these xenoliths give a temperature range of 1040±40 °C and a pressure estimate of about 1.5 GPa, corresponding to 50 to 60 km depth. Previous seismic studies have estimated the Moho to be at 20 to 25 km in this region, hence the xenoliths come from a hot mantle, probably asthenospheric, below a lithosphere of about 25 to 40 km in thickness below the Moho. We measure the crystallographic preferred orientation (CPO) of olivines and pyroxenes using a SEM and the Electron Back Scattered Diffraction (EBSD) technique. The CPO shows all three axes of olivine are tightly clustered: [100] axis is typically more tightly clustered than [010] and [001] is the most widely distributed axis. The fabric strength expressed by the integral J index, varies from 4.5 to 25.9, and decreases with the degree of recrystallization. We use CPO data to calculate anisotropic seismic properties of the xenoliths. They are very homogenous and probably statistically representative of the mantle below the Torre Alfina area. Vp ranges from 8.4 to 9.1 km/s, Vs1 from 4.8 to 5.0 km/s. The seismic anisotropy is more variable; AVp ranges from 9.8% to 19.3% and AVs from 7.3% to 13.4%. The majority of the xenoliths display an orthorhombic seismic symmetry, but xenoliths with a transverse isotropic behaviour have also been observed.

We consider four geodynamic models for the source region of the xenoliths (extension, shear, upwelling, slab tilted), defined by different orientations of the structural reference frame, and we calculated for each model the variation of the seismic properties with temperature, pressure and volume fraction of orthopyroxene. After comparing this variation of calculated seismic parameters with seismic observations from the region, we form the hypothesis that the xenoliths come from either an extensional tectonic zone (lineation X and foliation plane XY horizontal) or transcurrent shear zone (lineation X horizontal and foliation plane XY vertical) and that the mantle beneath Torre Alfina is composed by 70% olivine and 30% orthopyroxene forming an anisotropic layer of about 160 or 110 km in thickness, respectively.  相似文献   


2.
上地幔地震的各向异性主要归因于橄榄石的优选方位,不同的橄榄石优选方位模式可以作为上地幔不同动力学作用的指示剂。不同应力和含水量条件下的高温变形实验已经确定出五类橄榄石组构模式(“A”型、“B”型、“C”型、“D”型和“E”型)。本文运用电子背散射(EBSD)技术对来自苏鲁超高压变质带南部的芝麻房石榴石橄榄岩的橄榄石进行了优选方位测定,不同变形程度的橄榄石均显示了[100]轴近垂直于面理和[001]轴近平行于线理的特征,为“C”类组构模式,可见组构类型与变形程度没有关系,并且橄榄石组构所显示的NW向SE的剪切指向,与围岩-正、副片麻岩中形成于折返过程的石英优选方位所显示的SE向NW的剪切指向完全不同,说明芝麻房石榴石橄榄岩中橄榄石的“C”类组构是折返前形成的。结合橄榄石结构水的测量和已有的芝麻房石榴石橄榄岩形成的温压条件,推测该组构形成于含水俯冲带中,认为芝麻房石榴石橄榄岩的原岩来自于高含水的上部地幔楔碎块,与俯冲的陆壳物质一起经历了超高压变质作用并最终折返至地表。  相似文献   

3.
The frequently observed parallelism between rifts and the preexisting orogenic fabric of continents suggests that the inherited tectonic fabric of the lithosphere influences the rupture of continents. We propose that the existence of a pervasive fabric in the lithospheric mantle induces an anisotropic strength in the lithosphere, that guides the propagation of continental rifts. Subcrustal mantle mechanical anisotropy is supported by (i) the anisotropic strength of olivine, (ii) an ubiquitous tectonic fabric in exposed mantle rocks, and (iii) measurements of seismic and electrical anisotropy. During major episodes of continent assembly, a pervasive deformation of the lithosphere induces a lattice-preferred orientation of olivine in mantle rocks. Later on, this crystallographic fabric is ‘frozen-in’ and represents the main source of shear wave splitting. This olivine fabric may entail a mechanical anisotropy in the lithospheric mantle. During subsequent tectonic events, especially during rifting, mechanical anisotropy may control the tectonic behaviour of the lithosphere  相似文献   

4.
Automated electron backscattered diffraction (EBSD) was applied using a scanning electron microscope to obtain lattice preferred orientation (LPO) data for olivine in garnet peridotites of the Central Alps. As a reference frame, the LPOs of enstatite were also investigated. In the garnet peridotite at Cima di Gagnone (CDG), a weak foliation carrying a distinct lineation is present. The lineation is characterized by elongated enstatite, olivine and poikiloblastic garnet. Olivine shows a very unusual LPO with [100] normal to foliation and [001] parallel to lineation. Achsenverteilungsanalyse (AVA) maps demonstrate that [001] of olivine grains corresponds quite well to their maximum length axes which are preferentially parallel to the lineation. Numerous planar hydrous defects within (001) planes of olivine are marked by palisades of ilmenite rods and show a preferred orientation normal to lineation. Calculated P-wave velocities for CDG are fastest (8.32 km sу) normal to foliation with a relatively low anisotropy (2.9%). Compared to mantle peridotites with the usual (010)[100] LPO where the fastest Vp direction is towards the lineation, the relationship between flow geometry and seismic anisotropy is significantly different at CDG. Several mechanisms for the formation of the LPO type at CDG are considered, with glide possible on (100)[001] of olivine. On the basis of field data as well as petrographic and petrologic evidence, it has been demonstrated that the CDG garnet peridotite formed by prograde metamorphism from a hydrous protolith at pressures and temperatures of about 3.0 GPa and 750 °C, respectively. The CDG LPO is interpreted to have formed during hydrous subduction zone metamorphism. The same interpretation may hold for the previously investigated olivine LPO at Alpe Arami, which is similar to that at the nearby CDG. The observed anomalous LPO is no proof for ultradeep (>3.0 GPa) conditions.  相似文献   

5.
To understand the deformation mechanism and seismic anisotropy in the uppermost mantle beneath Spitsbergen, Svalbard, in the Arctic, the deformation microstructures of olivine in the peridotite of Spitsbergen were studied. Seismic anisotropy in the upper mantle can be explained mainly by the lattice-preferred orientation (LPO) of olivine. The LPOs of the olivine in the peridotites were determined using electron backscattered diffraction patterns. Eight specimens out of 10 showed that the [100] axis of the olivine was aligned subparallel to the lineation and that the (010) plane was subparallel to the foliation, showing a type A LPO. In the other two specimens the [100] axis of olivine was aligned subparallel to the lineation and both the [010] and [001] axes were distributed in a girdle nearly perpendicular to the lineation, showing a type D LPO. The dislocation density of the olivine in the samples showing a type D LPO was higher than that in the samples showing a type A LPO. The result of an Fourier transformation infrared study showed that both the types A and D samples were dry. These observations were in good agreement with a previous experimental study ( Tectonophysics , 421 , 2006, 1 ): samples showing a type D LPO for olivine were observed at a high stress condition and samples showing both types A and D LPO were deformed under dry condition. Observations of both strong LPOs and dislocations of olivine indicate that the peridotites studied were deformed by dislocation creep. The seismic anisotropy calculated from the LPOs of the olivine could be used to explain the seismic anisotropy of P - and S -waves in the lithospheric mantle beneath Spitsbergen, Svalbard.  相似文献   

6.
Chlorite peridotites from Almklovdalen in southwest Norway were studied to understand the deformation processes and seismic anisotropy in the upper mantle. The lattice preferred orientation (LPO) of olivine and chlorite was determined using electron backscattered diffraction (EBSD)/scanning electron microscopy. A sample with abundant garnet showed [100] axes of olivine aligned sub-parallel to lineation, and [010] axes aligned subnormal to foliation: A-type LPO. Samples rich in chlorite showed different olivine LPOs. Two samples showed [001] axes aligned sub-parallel to lineation, and [010] axes aligned subnormal to foliation: B-type LPO. Two other samples showed [100] axes aligned sub-parallel to lineation, and [001] axes aligned subnormal to foliation: E-type LPO. Chlorite showed a strong LPO characterized by [001] axes aligned subnormal to foliation with a weak girdle subnormal to lineation. Fourier transform infrared (FTIR) spectroscopy of the specimens revealed that the olivines with A-type LPO contain a small amount (170 ppm H/Si) of water. In contrast, the olivines with B-type LPOs contain a large amount (340 ppm H/Si) of water.

The seismic anisotropy of the olivine and chlorite was calculated. Olivine showed Vp anisotropy of up to 3.8% and a maximum Vs anisotropy of up to 2.7%. However, the chlorite showed a much stronger Vp anisotropy, up to 21.1%, and a maximum Vs anisotropy of up to 31.7%. A sample with a mixture of 25% of olivine and 75% of chlorite can produce a Vp anisotropy of 14.2% and a maximum Vs anisotropy of 22.9%. Because chlorite has a wide stability field at high pressure and high temperature in the subduction zone, the strong LPO of chlorite can be a source of the observed trench-normal or trench-parallel seismic anisotropy in the mantle wedge as well as in subducting slabs depending on the dipping angle of slab in a subduction zone where chlorite is stable.  相似文献   

7.
Five domains (microplates) have been recognized by seismic anisotropy in the mantle lithosphere of the Bohemian Massif. The mantle domains correspond to major crustal units and each of the domains bears a consistent fossil olivine fabric formed before their Variscan assembly. The present-day mantle fabric indicates that this process consisted of at least three oceanic subductions, each followed by an underthrusting of the continental lithosphere. The seismic anisotropy does not detect remnants of the oceanic subductions, but it can trace boundaries of the preserved continental domains subsequently underthrust along the paths of previous oceanic subductions. The most robust continent–continent collision was followed by westward underthrusting of the Brunovistulian mantle lithosphere, still detectable by seismic anisotropy more than 100 km beneath the Moldanubian mantle lithosphere. Major occurrences of the high-pressure/ultra high-pressure (HP–UHP) rocks follow the ENE and NNE oriented sutures and boundaries of the mantle–lithosphere domains mapped from three-dimensional modeling of body-wave anisotropy. The HP–UHP rocks are products of oceanic subductions and the following underthrusting of the continental crust and mantle lithosphere exhumed along the mantle boundaries. The close relation of the mantle sutures and occurrences of the HP–UHP rocks near the paleosubductions testifies for models interpreting the granulite–garnet peridotite association by oceanic/continental subduction/underthrusting followed by the exhumation of deep-seated rocks. Our findings support the bivergent subduction model of tectonic development of the central part of the Bohemian Massif. The inferences from seismic anisotropy image the Bohemian Massif as a mosaic of microplates with a rigid mantle lithosphere preserving a fossil olivine fabric. The collisional mantle boundaries, blurred by tectonometamorphic processes in easily deformed overlying crust, served as major exhumation channels of the HP–UHP rocks.  相似文献   

8.
The Kalininsky ultramafic massif is a fragment of lower structural zone of the Kurtushiba ophiolitic belt in the extreme northeastern part of the Western Sayan. The massif is composed largely of rocks making up the dunite-garzburgite banded complex. The northeastern part of the massif is composed mainly of dunite with linear NW-trending chromite-bearing zones, the localization of which is controlled by banding of the dunite-harzburgite complex. Harzburgite and dunite are characterized by inhomogeneous structures and textures caused by nonuniform ductile deformation, which is expressed as heterogeneous extinction, kink bands, and syntectonic and annealing recrystallization. The petrostructural patterns of olivine in harzburgite and dunite provide evidence for three stages of ductile deformation. At the first stage under deep mantle-crustal conditions, the ductile flow of ultramafic rocks developed mainly in a regime of axial compression, high temperature (>1000°C), and low strain rate (? < 10?6 s?1), which resulted in translational gliding along the (010)[100] and (100)[001] systems in olivine and enstatite, respectively, in combination with a subordinate role of syntectonic recrystallization. Consequently, the rocks acquired a medium-grained (mesogranular) microstructure. At the second stage, related to the thermal effect on ultramafics, the ductile flow developed under the settings of low strain rate (? < 10?6 s?1) and rising temperature (>1000°C). The translational gliding in olivine proceeded largely along (010)[100] and was accompanied by diffusion creep. As the temperature rose, ductile deformation gave way to secondary recrystallization of annealing, which facilitated the growth of olivine grains free of dislocations owing to absorption of individual grains oriented adversely relative to the compression axis and deformed grains saturated with dislocations. As a result, dunite and harzburgite with a coarse-grained porphyroblastic microstructure have been formed. The third stage of ductile flow was apparently related to their transport along deep-seated thrust faults under settings of intense shear deformations at a high temperature (~1000°C) and strain rate (? >10?4 s?1). The ductile flow in olivine resulted in heterogeneous translational gliding along (010)[100] and accompanied by intense syntectonic recrystallization with the formation of a porphyroblastic microstructure. Chromite mineralization in dunite is controlled by internal banding. Intense ductile flow facilitated the metamorphic separation of linearbanded Cr-spinel segregations. Thus, the results of a petrostructural study show that ultramafic rocks of the Kalninsky massif, ascending to the upper lithosphere, underwent both axial and shear ductile deformations in the mantle and lower crust, and these deformations controlled chromite mineralization.  相似文献   

9.
The Coyote Lake basalt, located near the intersection of the Hayward and Calaveras faults in central California, contains spinel peridotite xenoliths from the mantle beneath the San Andreas fault system. Six upper mantle xenoliths were studied in detail by a combination of petrologic techniques. Temperature estimates, obtained from three two-pyroxene geothermometers and the Al-in-orthopyroxene geothermometer, indicate that the xenoliths equilibrated at 970–1100 °C. A thermal model was used to estimate the corresponding depth of equilibration for these xenoliths, resulting in depths between 38 and 43 km. The lattice preferred orientation of olivine measured in five of the xenolith samples show strong point distributions of olivine crystallographic axes suggesting that fabrics formed under high-temperature conditions. Calculated seismic anisotropy values indicate an average shear wave anisotropy of 6%, higher than the anisotropy calculated from xenoliths from other tectonic environments. Using this value, the anisotropic layer responsible for fault-parallel shear wave splitting in central California is less than 100 km thick. The strong fabric preserved in the xenoliths suggests that a mantle shear zone exists below the Calaveras fault to a depth of at least 40 km, and combining xenolith petrofabrics with shear wave splitting studies helps distinguish between different models for deformation at depth beneath the San Andrea fault system.  相似文献   

10.
Antigorite (Atg) is stable throughout large parts of the wedge mantle of most subduction zones. Atg shows strong acoustic anisotropy and crystallographic preferred orientation (CPO) patterns of this mineral may contribute significantly to seismic anisotropy in convergent margins. Atg CPO patterns from the Higashi-Akaishi (HA) forearc mantle body of southwest Japan adds to the data set suggesting the most common Atg CPO pattern has a c-axis perpendicular to the foliation and a b-axis parallel to the stretching lineation. Statistical analysis using the eigenvector method of Atg CPO from two mutually perpendicular directions in the same sample (YZ-section and XZ-section) shows no significant differences implying sample preparation has no significant affect on the resulting Atg CPO. Reuss (uniform stress) averages of anisotropy for the Higashi-Akaishi samples are approximately treble the values for Voigt (uniform strain) averages. When comparing calculated anisotropy of hydrated mantle peridotite samples—such as the Higashi-Akaishi unit—with observed S-wave delay times in convergent margins, the appropriate averaging method needs to be considered.  相似文献   

11.
为了研究南极普里兹湾岩石圈深部应力场及其动力学,采用S波分裂旋转相关法,对中国第31次南极科学考察成功回收的3个站位海底地震仪数据(5个远震记录)进行了反演,获得了普里兹湾洋陆过渡带岩石圈各向异性特征.结果表明,台站所在区域各向异性显著,在较小的范围内存在明显的空间差异,快S波偏振方向变化范围是N40°E ~ N60°E,快慢波时间延迟变化范围为0.2~1.3 s.洋盆的各向异性主要取决于海底扩张地幔流作用,大陆及附近的各向异性主要受上地幔顶部残留构造的影响,而中间过渡带各向异性层厚度较小集中在地壳内,它可能受海底扩张地幔流和残留构造共同作用.   相似文献   

12.
角闪岩作为中下地壳的重要物质组成,其岩石和矿物的变形行为及力学强度表现直接制约着中下地壳力学属性与状态,因此开展对其中重要组成矿物角闪石的变形行为和地震波各向异性研究,具有重要地质意义.以红河-哀牢山剪切带中出露的变形角闪岩中角闪石为研究对象,其中显微构造分析表明,变形角闪岩分别呈现出粗、中粒条带状糜棱岩和细粒条带状超糜棱岩.分别对这3种变形岩石中的角闪石矿物颗粒进行了EBSD晶格优选定向分析和地震波各向异性计算,结果表明3种变形角闪岩中的角闪石呈现出不同取向及典型晶质塑性变形特征,(100)[001]主要滑移系发育,同时发育不同程度的(010)[001]和(110)[001]次级滑移系.我们认为在剪切变形过程中,角闪石双晶滑移和解理面滑移共同作用致使角闪石细粒化.从粗粒到细粒条带状角闪石,随着角闪石颗粒粒度减小,角闪石中AV_p也有逐渐变小的趋势,表明角闪石变形行为、形态优选定向及晶格优选定向共同影响着地震波各向异性.  相似文献   

13.
Effect of water and stress on the lattice-preferred orientation of olivine   总被引:6,自引:1,他引:5  
The influence of water and stress on the lattice-preferred orientation (LPO) of olivine aggregates was investigated through large strain, shear deformation experiments at high pressures and temperatures (P = 0.5–2.1 GPa, T = 1470–1570 K) under both water-poor and water-rich conditions. The specimens are hot-pressed synthetic olivine aggregates or single crystals of olivine. Water was supplied to the sample by decomposition of a mixture of talc and brucite. Deformation experiments were conducted up to γ (shear strain)  6 using the Griggs apparatus where water fugacity was up to  13 GPa at the pressure of 2 GPa. The water content in olivine saturated with water increases with increasing pressure and the solubility of water in olivine at P = 0.5–2 GPa was  400–1200 ppm H/Si. Several new types of LPO in olivine are found depending on water content and stress. Samples deformed in water-poor conditions show a conventional LPO of olivine where the olivine [100] axis is subparallel to the shear direction, the (010) plane subparallel to the shear plane (type-A). However, we identified three new types (type-B, C, and E) of LPO of olivine depending on the water content and stress. The type-B LPO of olivine which was found at relatively high stress and/or under moderate to high water content conditions is characterized by the olivine [001] axis subparallel to the shear direction, the (010) plane subparallel to the shear plane. The type-C LPO which was found at low stress and under water-rich conditions is characterized by the olivine [001] axis subparallel to the shear direction, the (100) plane subparallel to the shear plane. The type-E LPO which was found under low stress and moderate water content is characterized by the olivine [100] axis subparallel to the shear direction, the (001) plane subparallel to the shear plane. Observations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) show that the dislocations in water-poor samples (type-A) are curved and both b =  [100] and b = [001] dislocations have a similar population. Numerous subgrains are seen in water-poor samples in backscattered electron images. In contrast, water-rich samples (both type-B and type-C) contain mostly b = [001] dislocations and dislocations are straight and sub-grain boundaries are rare compared to those in water-poor samples. These observations suggest that (1) dominant slip systems in olivine change with water fugacity (and stress) and (2) grain boundary migration is enhanced in the presence of water. Seismic anisotropy corresponding to the fabrics under water-rich condition is significantly different from that under water-poor condition. Consequently, the relationship between seismic anisotropy and flow geometry in water-rich regions is expected to be different from that in water-poor regions in which type-A fabric dominates (i.e., the lithosphere). A few cases are discussed including anisotropy in the subduction zone and in the deep upper mantle.  相似文献   

14.
地震波各向异性日益成为不可忽视的地质地球物理现象。地球内部不同圈层(地壳、地幔和地核)都存在着地震波各向异性,并表现为不同的规模(小到单矿物和岩石,大到地体甚至上地幔)和强度。通过地震波各向异性可以间接获取岩石圈厚度、地球深部结构与构造变形、地球动力学和地幔对流等信息。主要从地震波各向异性的表现形式、原因及地质地球物理意义等方面对近年来大洋俯冲带、大陆裂谷、地幔转换带和大陆碰撞造山带(青藏高原)等构造环境中的研究成果进行了评述,讨论了各向异性[JP2]研究中需要重视的几个问题:①剪切波分辨率;②矿物组构研究;③其它各向异性成因机制。还强调了各向异性研究与流变学、高温高压岩石物理实验相结合的新方向。  相似文献   

15.
The only known post-Archaean komatiites are found on Gorgona,a small island off the Colombian coast that forms part of theCaribbean oceanic plateau. Mafic and ultramafic intrusions arelocated in the interior of the island. To establish the relationshipbetween intrusive and extrusive phases of ultramafic magmatism,and to help understand how an oceanic plateau is constructed,we undertook the first petrological and geochemical study ofthe intrusive rocks. Rare earth element patterns in gabbrosrange from almost flat to moderately depleted; in dunites andwehrlites, the depletion is more pronounced. These patternsfall midway in the range measured in Gorgona volcanics, whosecompositions vary from slightly enriched to extremely depleted.Nd isotope compositions indicate two distinct mantle sources,one highly depleted, the other less depleted. MgO contents ofparental liquids are estimated from olivine compositions at20–25 % in ultramafic lavas, and 12–13% in the intrusives.Petrographic observations and similarities in trace-elementcontents indicate that the two magma types are comagmatic, relatedthrough olivine fractionation. Modelling of major and traceelements indicates that the primary ultramafic magmas formedby advanced critical melting at high pressure in a rising mantleplume. The plumbing system that fed the Gorgona plateau wascomplex, being characterized by a series of magma chambers atdifferent crustal levels. Mantle-derived ultramafic liquidseither travelled directly to the surface to erupt as komatiiteflows, or were trapped in magma chambers where they differentiatedinto basaltic liquid and mafic to ultramafic cumulates. Gorgonagabbros and peridotites formed in shallow-level examples ofthese intrusions. KEY WORDS: Gorgona Island, Colombia; komatiite; mantle melting; oceanic plateau; melt transport  相似文献   

16.
Seismic anisotropy in the upper mantle provides important constraints on mantle dynamics, continental evolution and global tectonics and is believed to be produced by the flow-induced lattice-preferred orientation (LPO) of olivine. Recent experimental studies at high pressure and temperature have suggested that the LPO of olivine is affected by pressure in addition to water and stress. However, there has been no report yet for the pressure-induced LPO of natural olivine because samples from the deep upper mantle are rare and often unsuitable for study due to ambiguous foliation and lineation. Here we show evidence of the pressure-induced LPO of natural olivine in diamond-bearing garnet peridotites from Finsch, South Africa. We found that the [010] axes of olivine are aligned subnormal to foliation and that the [001] axes are aligned subparallel to lineation, which is known as B-type LPO of olivine. The equilibrium pressure of the samples, as estimated using geobarometer, was greater than 4 GPa, indicating that the samples originated from a depth greater than ∼120 km. In addition, FTIR spectroscopy of the olivine showed that the samples are dry, with a water content of less than 90 ± 20 ppm H/Si (5.5 ± 1.2 ppm wt. H2O). These data suggest that the samples are the first natural examples of olivine displaying B-type LPOs produced due to high pressure under dry condition. Our data indicate that the trench-parallel seismic anisotropy observed in many subduction zones in and below subducting slabs at depths greater than ∼90 km under dry condition may be attributed to the pressure-induced olivine fabrics (B-type LPO) and may be interpreted as the entrainment of the sub-lithospheric mantle in the direction of subduction rather than anomalous trench-parallel flow.  相似文献   

17.
上地幔的岩石组构和各向异性   总被引:7,自引:1,他引:7  
着重介绍了上地幔各向异性及其成因,研究内容和方法,各向异性研究的地球动力学意义,并强调指出橄榄石和辉石在塑性固态流动过程中产生的晶格优选方位或组构是导致上地幔各向异性最主要原因。  相似文献   

18.
Two picrite flows from the SW rift zone of Mauna Loa containxenoliths of dunite, harzburgite, lherzolite, plagioclase-bearinglherzolite and harzburgite, troctolite, gabbro, olivine gabbro,and gabbronorite. Textures and olivine compositions precludea mantle source for the xenoliths, and rare earth element concentrationsof xenoliths and clinopyroxene indicate that the xenolith sourceis not old oceanic crust, but rather a Hawaiian, tholeiitic-stagemagma. Pyroxene compositions, phase assemblages and texturalrelationships in xenoliths indicate at least two different crystallizationsequences. Calculations using the pMELTS algorithm show thatthe two sequences result from crystallization of primitive MaunaLoa magmas at 6 kbar and 2 kbar. Independent calculations ofolivine Ni–Fo compositional variability in the plagioclase-bearingxenoliths over these crystallization sequences are consistentwith observed olivine compositional variability. Two parentsof similar bulk composition, but which vary in Ni content, arenecessary to explain the olivine compositional variability inthe dunite and plagioclase-free peridotitic xenoliths. Xenolithsprobably crystallized in a small magma storage area beneaththe rift zone, rather than the large sub-caldera magma reservoir.Primitive, picritic magmas are introduced to isolated rift zonestorage areas during periods of high magma flux. Subsequenteruptions reoccupy these areas, and entrain and transport xenolithsto the surface. KEY WORDS: xenolith; Hawaii; volcano plumbing; mineral composition; picrite  相似文献   

19.
藏南变质橄榄岩的橄榄石组构可划分为三个主要类型:[100]、[010]和[001]组构。橄榄石[100]组构反映洋壳下部—上地幔上部的高温粘性流变和高温塑性流变,橄榄石[010]和[001]组构基本上是构造侵位阶段陆壳中低温塑性流变结果。变质橄榄岩中橄榄石组构转化具有明显的规律性,在岩体变形过程中,总的显示由高温的[100]组构逐渐转化为低温的[001]、[010]组构。高温塑性流变组构影响和制约低温塑性流变组构的发育,叠加变形有利于橄榄石[100]极密的加强和[100]组构向[010]、[001]组构的转化。  相似文献   

20.
This paper reports the results of optical and electron microscopic investigations of mantle olivine samples with H2O contents of tens-hundreds ppm weight. Samples were obtained from the xenoliths and xenocrysts of the Udachnaya pipe. At the scale of optical microscope magnification, a peculiar banded microstructure was observed in thin sections prepared parallel to the olivine (010) plane. It is formed by cross-hatched bands parallel to four crystallographic directions of the olivine structure: [100], [001], [101], and [−101]. At the scale of electron optical magnifications, the banded microstructure is observed as nanometer-sized heterogeneities of various types which are related to olivine deformation: (a) planar defects parallel to (100) and (001) corresponding to the (100)[010] and (001)[100] dislocation glide systems, respectively; they are occasionally transformed into lamellae or decorated by nanoinclusions; and (b) nanometer-sized heterogeneities formed by nanoinclusion arrays not related to planar defects and oriented along the same directions of the olivine structure as the optically visible bands. The deformation structures are decorated by coupled point OH-bearing defects, which were initially present in the olivine. The crystallographically oriented arrays of nanoinclusions of high-pressure hydrous silicates are considered as a result of olivine deprotonization (elimination of OH-bearing defects from the olivine structure) in the zones of previous deformation compression in the crystal. Light refraction effects on the nanoinclusions make these zones optically visible and produce the banded microstructure, which is a consequence of previous deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号