首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The finite element method is widely employed in numerical analysis of seismic liquefaction at present. However, due to the mesh distortion in strong dynamic action, the results are generally inaccurate and can even stop the calculation. Therefore, an adaptive mesh refinement (AMR) scheme is introduced to improve the numerical results based on a finite element and finite difference coupled dynamic method (FEM–FDM). The changing law about the errors due to the linear and the bilinear recovered fields of coarse meshes, AMR meshes and fine meshes is discussed. The seismic response on soil is compared between different AMR meshes. The AMR strategy can better simulate seismic liquefaction and offer more accurate results than the normal finite element simulation.  相似文献   

2.
Much research has been conducted for physics‐based ground‐motion simulation to reproduce seismic response of soil and structures precisely and to mitigate damages caused by earthquakes. We aimed at enabling physics‐based ground‐motion simulations of complex three‐dimensional (3D) models with multiple materials, such as a digital twin (high‐fidelity 3D model of the physical world that is constructed in cyberspace). To perform one case of such simulation requires high computational cost and it is necessary to perform a number of simulations for the estimation of parameters or consideration of the uncertainty of underground soil structure data. To overcome this problem, we proposed a fast simulation method using graphics processing unit computing that enables a simulation with small computational resources. We developed a finite‐element‐based method for large‐scale 3D seismic response analysis with small programming effort and high maintainability by using OpenACC, a directive‐based parallel programming model. A lower precision variable format was introduced to achieve further speeding up of the simulation. For an example usage of the developed method, we applied the developed method to soil liquefaction analysis and conducted two sets of simulations that compared the effect of countermeasures against soil liquefaction: grid‐form ground improvement to strengthen the earthquake resistance of existing houses and replacement of liquefiable backfill soil of river wharves for seismic reinforcement of the wharf structure. The developed method accelerates the simulation and enables us to quantitatively estimate the effect of countermeasures using the high‐fidelity 3D soil‐structure models on a small cluster of computers.  相似文献   

3.
Buried pipelines are often constructed in seismic and other geohazard areas, where severe ground deformations may induce severe strains in the pipeline. Calculation of those strains is essential for assessing pipeline integrity, and therefore, the development of efficient models accounting for soil‐pipe interaction is required. The present paper is aiming at developing efficient tools for calculating ground‐induced deformation on buried pipelines, often triggered by earthquake action, in the form of fault rupture, liquefaction‐induced lateral spreading, soil subsidence, or landslide. Soil‐pipe interaction is investigated by using advanced numerical tools, which employ solid elements for the soil, shell elements for the pipe, and account for soil‐pipe interaction, supported by large‐scale experiments. Soil‐pipe interaction in axial and transverse directions is evaluated first, using results from special‐purpose experiments and finite element simulations. The comparison between experimental and numerical results offers valuable information on key material parameters, necessary for accurate simulation of soil‐pipe interaction. Furthermore, reference is made to relevant provisions of design recommendations. Using the finite element models, calibrated from these experiments, pipeline performance at seismic‐fault crossings is analyzed, emphasizing on soil‐pipe interaction effects in the axial direction. The second part refers to full‐scale experiments, performed on a unique testing device. These experiments are modeled with the finite element tools to verify their efficiency in simulating soil‐pipe response under landslide or strike‐slip fault movement. The large‐scale experimental results compare very well with the numerical predictions, verifying the capability of the finite element models for accurate prediction of pipeline response under permanent earthquake‐induced ground deformations.  相似文献   

4.
A parallel soil–structure interaction (SSI) model is presented for applications on distributed computer systems. Substructring method is applied to the SSI system and a coupled finite–infinite element based parallel computer program is developed. In the SSI system, infinite elements are used to represent the soil which extends to infinity. In this case, a large finite element mesh is required to define the near field for reliable predictions. The resulting large-scale problems are solved on distributed computer systems in this study. The domain is represented by separated substructures and an interface. The number of substructures are determined by the available processors in the parallel platform. To avoid the formation of large interface equations, smaller interface equations are distributed to processors while substructure contributions are performed. This saves a lot of memory storage and computational effort. Direct solution techniques are used for the solution of interface and substructure equation systems. The program is investigated through some example problems. The example problems exposed the need for solving large-scale problems in order to reach better results. The results of the example problems demonstrated the benefits of the parallel SSI algorithm.  相似文献   

5.
The finite‐difference method on rectangular meshes is widely used for time‐domain modelling of the wave equation. It is relatively easy to implement high‐order spatial discretization schemes and parallelization. Also, the method is computationally efficient. However, the use of finite elements on tetrahedral unstructured meshes is more accurate in complex geometries near sharp interfaces. We compared the standard eighth‐order finite‐difference method to fourth‐order continuous mass‐lumped finite elements in terms of accuracy and computational cost. The results show that, for simple models like a cube with constant density and velocity, the finite‐difference method outperforms the finite‐element method by at least an order of magnitude. Outside the application area of rectangular meshes, i.e., for a model with interior complexity and topography well described by tetrahedra, however, finite‐element methods are about two orders of magnitude faster than finite‐difference methods, for a given accuracy.  相似文献   

6.
The investigation of complex soil-structure interaction problems is usually carried out with numerical solution procedures such as the finite element or the boundary element method. It must be noted, however, that the choice of one or the other of these approaches is not just a matter of preferences; depending on the type of the problem under consideration, either boundary or finite elements may be more advantageous. A considerable expansion in the computational power can be obtained, on the other hand, if one resorts to hybrid schemes which retain the main advantages of the two methods and eliminate their respective disadvantages. This paper presents results obtained with a boundary element-finite element coupling procedure, and discusses its applicability to some representative soil-structure interaction problems. The structures considered are elastic systems, such as foundations, tunnels and filled trenches (modelled by finite elements), which are coupled with homogeneous elastic halfspaces (modelled by boundary elements). The examples demonstrate the importance of using a model that includes wave radiation effects. The coupling approach is formulated entirely in the time domain so that an extension of the algorithm to non-linear analyses seems to present no further difficulties.  相似文献   

7.
8.
本文对板采用四结点分层板弯曲单元,对柱采用八结六面体等参单元,建立了钢筋混凝土板柱节点有限元非线性计算模型,编制了反复荷载下钢筋混凝土非线性有限元计算程序。文中介绍了作者进行的板柱节点在反复荷载作用下的试验结果,用试验数据合流验证了所建立的有限元程序的可靠性。文反柱中节点和边节 竖向剪力和低周反复水平茶叶工共同作用下的受力性能进行了全过程计算分析。  相似文献   

9.
自适应非结构有限元MT二维起伏地形正反演研究   总被引:5,自引:1,他引:4       下载免费PDF全文
在山区进行MT勘探时,用规则网格有限元方法模拟起伏地形会受到限制.本文采用非结构三角网格可以有效地模拟任意二维地质结构,如起伏地形、倾斜岩层和多尺度构造等.正演引入自适应有限元方法,其在网格剖分过程中能根据单元误差自动细化网格,保证了正演结果的精度.将自适应有限元与Occam算法结合,且引用并行处理技术提高正反演计算速度.通过对比两个理论模型,讨论了地形对MT正演响应的影响;其次进行了不同地电模型带地形反演展示了本文算法的正确性和适用性;最后将该方法应用于实测MT数据处理,证明了自适应非结构有限元方法是复杂地形下处理MT数据的有力工具.  相似文献   

10.
The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, are modeled by the finite elements, and the wave propagation properties of the far field extending to infinity are modeled by the infinite elements. One particular feature of the 2.5D approach is that it enables the computation of the three-dimensional response of the half-space, taking into account the load-moving effect, using only a two-dimensional profile. Although the 2.5D finite/infinite element approach shows a great advantage in studying the wave propagation caused by moving trains, attention should be given to the calculation aspects, such as the rules for mesh establishment, in order to avoid producing inaccurate or erroneous results. In this paper, some essential points for consideration in analysis are highlighted, along with techniques to enhance the speed of the calculations. All these observations should prove useful in making the 2.5D finite/infinite element approach an effective one.  相似文献   

11.
对于钢筋混凝土框架,考虑楼板与梁的协同作用可以更充分地体现结构静动力性能。本文首先采用分层壳单元模拟楼板,通过刚臂耦合梁板,建立了可以较好模拟梁板协同工作的框架结构有限元模型,并与其它3种采用简化假定的模型进行了比较。为了控制这种模型的分析误差,必须将梁、板划分为较小单元,所以需要耗费大量的计算机内存和时间。为此,比较分析了采用集群并行计算与普通串行计算的求解时间,结果说明对于中等到较大的框架模型,集群计算均可以大量减少计算时间。  相似文献   

12.
本文实现了一种面向目标自适应海洋可控源电磁三维矢量有限元方法.为满足三维复杂电性结构模拟的需求,网格剖分采用非结构化六面体.在组装刚度矩阵之后,形成的大型复数线性方程组分解为等价的实数形式,利用带预条件的广义最小残差法进行求解.在获得微分方程的解之后,为提高解的准确性,通过面向目标的自适应误差估计来指示网格细化,重点加密能使观测点数值模拟精度提高的网格.对于大规模三维数据,为了使模型空间的并行计算达到均衡负载的效果,我们使用METIS函数库来进行网格计算任务量的划分.最后,通过对比一维解析解与三维自适应矢量有限元计算结果,验证了程序的正确性;通过自适应过程中误差指示子的分布,验证了面向目标自适应的有效性;通过对三维复杂模型进行均衡负载下的并行计算,测试了程序的可扩展性.  相似文献   

13.
利用基于Biot的饱和多孔介质理论和砂土多重机构模型的动力分析有限元程序FLIP,对遭受M6.7地震的国外某深厚砂质覆盖层土坝进行有效应力动力分析,研究坝体和地基的动力反应特性及其超静孔隙水压力的分布规律。通过对坝体加速度和永久变形的计算结果与现场实测数据的比较分析,证明两者之间存在一定差异,但计算结果基本上反映坝体加速度与永久变形的实际分布特征,从而说明采用的数值计算方法和本构模型具有一定精度。根据计算结果可以得出:坝体无液化发生;坝底上游浅层地基可能会发生局部液化,但范围较小,可以不进行加固处理;坝趾附近浅层地基可能会发生较大范围的液化,因此须采取相应的抗液化加固措施。  相似文献   

14.
Dynamic finite element analyses of a four‐story steel building frame modeled as a fine mesh of solid elements are performed using E‐Simulator, which is a parallel finite element analysis software package for precisely simulating collapse behaviors of civil and building structures. E‐Simulator is under development at the National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. A full‐scale shake‐table test for a four‐story frame was conducted using E‐Defense at NIED, which is the largest shaking table in the world. A mesh of the entire structure of a four‐story frame with approximately 19 million degrees of freedom is constructed using solid elements. The density of the mesh is determined by referring to the results of elastic–plastic buckling analyses of a column of the frame using meshes of different densities. Therefore, the analysis model of the frame is well verified. Seismic response analyses under 60, 100, and 115% excitations of the JR Takatori record of the 1995 Hyogoken‐Nanbu earthquake are performed. Note that the simulation does not reproduce the collapse under the 100% excitation of the Takatori record in the E‐Defense test. Therefore, simulations for the 115% case are also performed. The results obtained by E‐Simulator are compared with those obtained by the E‐Defense full‐scale test in order to validate the results obtained by E‐Simulator. The shear forces and interstory drift angles of the first story obtained by the simulation and the test are in good agreement. Both the response of the entire frame and the local deformation as a result of elastic–plastic buckling are simulated simultaneously using E‐Simulator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
介绍了钢筋混凝土框架结构计算机仿真和并行计算的研究现状。数值仿真主要采用有限元、离散元等数学物理模型,而可视化技术及图形仿真基于图形学和图像处理技术,是驾驭计算过程及理解大体积数据的唯一有效途径。有限元并行计算有SBS、EBE两种策略,非线性求解有直接与迭代解法,动力时程分析有显式、隐式和精细时程积分法。最后介绍了并行计算在钢筋混凝土结构分析中的应用。  相似文献   

16.
针对振动台试验,采用u-p形式控制方程表述饱和砂土的动力属性,选用土的多屈服面塑性本构模型刻画饱和砂土和黏土的力学特性,引入非线性梁-柱单元模拟桩,建立试验受控条件下液化场地群桩-土强震相互作用分析的三维有限元模型,并通过试验结果验证数值建模途径与模拟方法的正确性。以实际工程中常用的2×2群桩为例,建立桩-土-桥梁结构强震反应分析三维有限元模型。基于此,针对不同群桩基础配置对液化场地群桩-土强震相互作用影响展开具体分析。对比发现,桩的数量相同时,桩排列方向与地震波输入方向平行时比垂直时桩基受力减小5%~10%,而对场地液化情况无明显影响;相同排列形式下,三桩模型中土体出现液化的时间约比双桩模型延缓5s,桩上弯矩和剪力减小33%~38%。由此可见,桩基数量增加,桩-土体系整体刚度更大,场地抗液化性能显著,桩基对上部桥梁结构的承载性能明显增强,其安全性与可靠性更高。这对实际桥梁工程抗震设计具有一定的借鉴意义。  相似文献   

17.
The main goal of this work is to appraise the finite element method in the way it represents barotropic instabilities. To that end, three different formulations are employed. The free-surface formulation solves the primitive shallow-water equations and is of predominant use for ocean modeling. The vorticity–stream function and velocity–pressure formulations resort to the rigid-lid approximation and are presented because theoretical results are based on the same approximation. The growth rates for all three formulations are compared for hyperbolic tangent and piecewise linear shear flows. Structured and unstructured meshes are utilized. The investigation is also extended to time scales that allow for instability meanders to unfold, permitting the formation of eddies. We find that all three finite element formulations accurately represent barotropic instablities. In particular, convergence of growth rates toward theoretical ones is observed in all cases. It is also shown that the use of unstructured meshes allows for decreasing the computational cost while achieving greater accuracy. Overall, we find that the finite element method for free-surface models is effective at representing barotropic instabilities when it is combined with an appropriate advection scheme and, most importantly, adapted meshes.  相似文献   

18.
The Di Wang Tower located in Shenzhen has 79 storeys and is about 325 m high. Field measurements have been conducted to investigate the dynamic characteristics of the super‐tall building. In parallel with the field measurements, seven finite element models have been established to model the multi‐outrigger‐braced tall building and to analyse the effects of various arrangements of outrigger belts and vertical bracings on the dynamic characteristics and responses of the Di Wang Tower under the design wind load and earthquake action. The distributions of shear forces in vertical structural components along the building height are also presented and discussed. The results from detailed modelling of group shear walls with several types of finite elements are addressed and compared to investigate various modelling assumptions. Finally, the performance of the finite element models is evaluated by correlating the natural frequencies and mode shapes from the numerical analysis with the finite element models and the field measurements. The results generated from this study are expected to be of interest to professionals and researchers involved with the design of tall buildings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The dynamic element method has been shown previously to provide a computational advantage over the ordinary finite element method for various beam elements. The Taylor expansions are computed here for the dynamic shape functions (two terms) and dynamic stiffness matrix (four terms) for the axisymmetric vibrations of an annular plate element. The complicated matrices which result are made more tractable by expressing them as power series in powers of the aspect ratio. The percentage error in the natural frequencies is then calculated using both the two- and the three-term dynamic stiffness matrix, demonstrating the increased accuracy for a given number of elements.  相似文献   

20.
The evaluation of a countermeasure against liquefaction which uses a sheet pilering for oil tank sites is presented. The simulation of earthquake responses observed at tank sites with and without sheet pile-ring is first performed to validate the three-dimensional finite element numerical model. Using the numerical model, liquefaction analysis is performed and the excess pore water pressure generated in the soil and the settlement of tank are investigated. The comparison of two- and three-dimensional models is also conducted to assess the applicability of two-dimensional analysis. The results show that the numerical model could simulate the observed earthquake responses of tank-ring-soil system, and that the excess pore water pressure and the settlement of the tank could be significantly reduced using a sheet pile-ring. The two-dimensional analysis proves to be capable of representing the main features of the dynamic response of the three-dimensional tank-ring-soil system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号