首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Acoustics have the promise of being able to have a significant impact on our understanding of coastal sedimentary processes, which play such an important role in the dynamics of the coastal and shallow water environment. Due to this, the application of acoustics for remotely measuring suspended sediments, over ranges from metres to tens of metres, is gaining acceptance within the sediment community. This recognition of the use of acoustics to the area of sediment processes is based on advances which have been made decade in the understanding of the interaction of sound with marine suspended sediments, and also due to ongoing field observations which have shown the unique ability of the acoustic technique to measure suspended sediment profiles. In the present work acoustic measurements of suspended sediments have been conducted at 1, 2.5, 3, and 5 MHz in a number of different shallow water environments. The interpretation of the acoustic data to obtain suspended sediment concentration is presented, and some of the difficulties when inverting the acoustic information to obtain the suspended load are considered. Some discussion is also given to future uses of acoustics for studying sediment processes, and how one may utilize the application of underwater sound to manage our coastal environment more effectively  相似文献   

3.
A two-dimensional finite difference numerical model, capable of predicting depth-averaged tidal flow fields in coastal and estuarine waters, has been extended to include tide-induced non-cohesive sediment transport processes. The partial differential equations governing the conservation of mass, momentum and suspended sediment in an incompressible turbulent flow are included in a depth-integrated form in the model. For the representation of the processes of erosion and deposition of sediment from the bed an empirically based source-sink term was refined, based on the results of three mobile bed flume studies. The model has been tested by simulating tidal flows and suspended sediment fluxes in two estuaries, with particular application to the Humber estuary in the U.K. The model was calibrated and found to produce an encouraging degree of agreement between the numerical predictions and corresponding field measurements for this estuary. Furthermore, the predicted gross deposition and erosion features of the estuary were found to be in close agreement with interpretations from Eulerian tidal residual predictions.  相似文献   

4.
对长江口2002年和2003年共4个潮周期的数据进行了分析,通过流速对数剖面公式计算边界层参数,并对各个潮周期内的边界层参数的变化规律进行了分析,同时也对悬沙输送可能对垂向水流结构以及边界层参数造成的影响进行了探讨。结果表明,悬沙的时间分布特征对温度、盐度、水体密度的分布格局有重要影响,主要表现在水体的Rf值普遍较高,分层稳定。此外,悬沙也可影响边界层参数,从而对水流结构产生影响。由于水体的层化作用,使层间的摩擦阻力增大,相当于在垂向上产生不同内边界层,因而影响了流速在垂向上的变化。  相似文献   

5.
Sheet flow and suspension of sand in oscillatory boundary layers   总被引:1,自引:0,他引:1  
after revisionTime-dependent measurements of flow velocities and sediment concentrations were conducted in a large oscillating water tunnel. The measurements were aimed at the flow and sediment dynamics in and above an oscillatory boundary layer in plane bed and sheet-flow conditions. Two asymmetric waves and one sinusoidal wave were imposed using quartz sand with D50 = 0.21 mm. A new electro-resistance probe with a large resolving power was developed for the measurement of the large sediment concentrations in the sheet-flow layer. The measurements revealed a three layer transport system consisting of a pick-up/deposition layer, an upper sheet flow layer and a suspension layer.In the asymmetric wave cases the total net transport was directed “onshore” and was mainly concentrated in the thin sheet flow layer (< 0.5 cm) at the bed. A small net sediment flux was directed “offhore” in the upper suspension layer. The measured flow velocities, sediment concentrations and sedimenl fluxes showed a good qualitative agreement with the results of a (numerical) 1DV boundary-layer flow and transport model. Although the model did not describe all the observed processes in the sheet-flow and suspension layer, the computational results showed a reasonable agreement with measured net transport rates in a wide range of asymmetric wave conditions.  相似文献   

6.
This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.  相似文献   

7.
This paper derives local formulae to estimate bed roughness and suspended transport and present a method to calculate net sediment transport at tidal inlet systems, combining field data and a range of well established empirical formulations. To accomplish this, measurements spanning a spring-tidal cycle of mean water levels, waves, near-bed flow turbulence and bed forms were obtained from the Ancão Inlet, Ria Formosa lagoon system, Portugal. High-resolution hydrodynamic data were gathered using acoustic equipments and by measuring sediment properties (grain-size diameter and bed form dimensions) under fair-weather conditions. The results compared favourably with available direct and indirect field observations of sediment transport rates. The approach appears to be robust and widely applicable and so can be applied to the same conditions in any tidal inlet system. This is of particular importance when attempting to understand sediment transport at inlet mouths, and has practical applications in a range of coastal engineering and coastal management areas concerned with navigation safety, coastal erosion, ecosystem health and water quality. The study discusses the applicability of the method on evaluating system flushing capacity, giving important insights on multiple inlet evolution, particularly with regard to their persistence through time. The methodological framework can be applied to assess the long-term stability of single- and multiple-inlet systems, provided that estimates of sediment storage at ebb-tidal deltas are available and sediment transport estimates during storm events are statistically considered.  相似文献   

8.
Unfluidized soil responses of a silty seabed to monochromatic waves   总被引:3,自引:0,他引:3  
A flume experimental study on unfluidized responses of a silty bed (d50=0.05 mm) to monochromatic water waves had shown that pore pressure variations were generally poro-elastic in the bulk body and displayed two other characteristic features not found in previous laboratory sand tests. They were an immediately fluidized thin surface layer induced by wave stresses inside the seabed's boundary layer and a porous skeleton with internally suspended sediments due to channeled flow motions. The analyses verified that on soils beneath the measurement points, both features resulted in relatively small-step pore pressure build-ups, while the former played a primary role. Besides, laboratory observations confirmed that there were some near-bed sediment suspensions during wave actions resulting in a flat bed form over a silty bed compared to small-scaled ripples over a sandy bed with no clearly identified suspended sediments. These characteristic silt responses suggest that sediment transport is critically associated with the internal soil responses and some field-observed sediment suspensions near above sandy beaches can further be approached in the laboratory by utilizing fine-grained soils.  相似文献   

9.
ZHAO  Ming 《中国海洋工程》2002,16(4):513-523
A numerical model is developed for estimation of local scour around a large circular cylinder under vvave action. The model includes wave diffraction around structures, bed shear stress calculation inside the vvave boundary layer and topo-graphical change model. The vvave model is based on the improved Boussinesq equations for varying depth. The vvave boundary layer is calculaled by solving the integrated momentum equation over the boundary layer. The bed shear stress due to streaming, an important factor affecting the sediment transport around a large-scale cylinder, is calculated. The Lagrangian drift velocity is included in calculation of the suspended sediment transport rates. The model is implemented by a finite element method and the results from the present model, which agree well with experimental data, are com-pared vvith those from other methods.  相似文献   

10.
渤海海峡沉积物输运的参数化计算   总被引:1,自引:1,他引:0  
本文以2018年冬季渤海海峡两个站位的定点连续观测数据为基础,使用一维参数化方案,计算了观测站位底边界层内的水平悬浮物输运通量以及推移质输运量。在参数化方案中,简化的一维对流扩散方程被用于计算底边界层内的垂向悬浮物浓度。为了验证参数化方案的可靠性,本文基于观测数据对比了两种底剪切应力计算模型、四种临界起动剪切应力计算方法和两种一维对流扩散方程解法。对比结果表明:(1)不同模型计算的底剪切应力结果相近;(2)临界起动剪切应力受到颗粒间黏性作用的影响;(3)一维对流扩散方程的求解过程需要考虑沉积物浓度的分层效应和不同粒级颗粒临界起动剪切应力的差异。基于上述对比结果确定的最优参数化方案,进一步计算了观测站位的沉积物输运量:(1)在有再悬浮的时段,距底5 m内的水平悬浮物通量占全水深悬浮物通量的比例(T01站约为21%,T02站约为17%)显著高于相同层位水通量的占比;(2)依据参数化方案估算的冬季平均的悬浮物通量比忽略底边界层悬浮物浓度垂向变化的传统方法结果高约16%;(3)推移质输运量比悬移质输运量约低两个数量级。  相似文献   

11.
In May of 2005, an observational program was carried out to investigate the along channel hydrodynamics and suspended sediment transport patterns at North Inlet, South Carolina. Along channel variability, which is important in establishing sediment transport pathways, has not been characterized for this system. Measurements of water column currents, salinity, bed sediment, suspended sediment concentration, and particle size distribution were obtained over a complete tidal cycle along the thalweg of the inlet entrance. Along channel currents, shear stress and bed sediment distributions vary significantly in space and time along a 3 km section bracketing the inlet throat. Most of the variability is consistent with geomorphic controls such as bed elevation variability and channel width. The highest velocities, shear stresses, suspended sediment concentration and bed sediment grain size are observed in the narrowest section of the inlet throat. Magnitudes systematically decrease along the channel toward the marsh as changes in channel geometry and branching reduces flow energy. Due to tidal asymmetry, the ebb phase contains significantly higher currents and associated sediment transport. Over the complete tidal cycle, depth integrated transport is directed towards the marsh landward of the intersection of Town and Debidue Creek. In contrast, net transport is out of the inlet seaward of this intersection. Sediment grain size distributions show 35% more material less than 63 μm on flood, suggesting net landward transport of fines.  相似文献   

12.
A new model for the boundary layer development and associated skin friction coefficients and shear stress within the swash zone is presented. The model is developed within a Lagrangian reference frame, following fluid trajectories, and can be applied to both laminar flow and smooth turbulent flow. The model is based on the momentum integral approach for steady, flat-plate boundary layers, with appropriate modifications to account for the unsteady flow regime and flow history. The model results are consistent with previous measurements of bed shear stress and skin friction coefficients within the swash zone. These indicate strong temporal and spatial variation throughout the swash cycle, and a clear distinction between the uprush and backwash phase. This variation has been previously attributed the unsteady flow regime and flow history effects, both of which are accounted for in the new model. Fluid particle trajectories and velocity are computed using the non-linear shallow water wave equations and the boundary layer growth across the entire swash zone is estimated. Predictions of the bed shear stress and skin friction coefficients agree reasonably well with direct bed shear stress measurements reported by Barnes et al. (Barnes, M.P., O’Donaghue, T., Alsina, J.M., Baldock, T.E., 2009. Direct bed shear stress measurements in bore-driven swash. Coastal Engineering 56 (8), 853–867) and, for a given flow velocity, give stresses which are consistent with the bias toward uprush sediment transport which has consistently been observed in measurements. The data and modelling suggest that the backwash boundary layer is initially laminar, which results in the late development of significant bed shear during the backwash, with a transition to a turbulent boundary layer later in the backwash. A new conceptual model for the boundary layer structure at the leading edge of the swash is proposed, which accounts for both the no-slip condition at the bed and the moving wet–dry interface. However, further development of the Lagrangian Boundary Layer Model is required in order to include bore-generated turbulence and to account for variable roughness and mobile beds.  相似文献   

13.
长江河口区边界层参数的观测与分析   总被引:1,自引:0,他引:1  
2003年11月在长江口南槽用ADCP进行定点水文观测,结果表明研究区为不规则半日潮,在水流转向期流速较低时常出现悬沙浓度峰值。根据流速对数剖面分布模型与悬沙分布模型,分别计算了海底边界层参数,其中潮周期内摩阻流速可达0.15 m/s,粗糙长度为0.01~1.2 m,拖曳系数为10-3~10-4,边界层厚度为2~4 m,悬沙的沉降速率为0.2~6 mm/s。  相似文献   

14.
A numerical model, coupling an analysis of beach groundwater flow with an analysis of swash wave motion over a uniform slope, is presented. Model calculations are performed to investigate the variations of swash-induced filtration flows across the beach face for different input parameters. Swash zone sediment transport under the influence of such filtration flow across the beach face is investigated through modification of effective weight of sediment particle and modification of swash boundary layer thickness. These effects are quantified based on a bed load transport model with a modified Shields parameter.  相似文献   

15.
长江口悬沙动力特征与输运模式   总被引:5,自引:0,他引:5  
本项研究用ADCP在长江河口进行高频、高分辨率三维流速和声学浊度的定点观测,通过对定点站位潮周期内的悬沙浓度、流速和盐度的分析,计算悬沙输运率;悬沙输运机制分析表明平流作用、斯托克斯漂移效应在悬沙输运中占据主导地位.此外,从河口内向河口外,潮周期内的水动力特征与悬沙净输运具有明显的地域性差异,主要表现在悬沙输送的贡献因子、盐度的垂向混合和分布特征、垂向流速等方面.在拦门沙下游和口外地区,悬沙均向西、北方向输送,而拦门沙上游则向东、南方向输送.这种悬沙输运格局,对于长江口拦门沙及附近最大浑浊带的形成有着重要的作用.  相似文献   

16.
The Drag-type In-Situ Acoustic Measurement System (DISAMS) is a new instrument designed for rapid measurement of seabed sediment acoustic parameters, including the sediment sound velocity and acoustic attenuation coefficient. The DISAMS consists of six independent acoustic probes arranged symmetrically such that each side has one transmitting probe and two receiving probes. The entire operation is controlled and monitored in real time by a deck control unit on board, and the center frequency of the DISAMS is 30?kHz. The DISAMS can record full waveforms to determine the sound velocity and attenuation coefficient in the seabed sediment. In addition to site measurements, the DISAMS can also carry out towing measurements, resulting in improved efficiency compared with existing in-situ acoustic measurement systems. This article presents the configuration, electronics, and tests of the DISAMS in detail. Laboratory tests were conducted in a sediment pool, sea trials were carried out in the Zhoushan Islands, and sound velocity and attenuation coefficient data were obtained. The test results demonstrated that the DISAMS performed well and was able to measure the sound velocity and attenuation coefficient rapidly and accurately in both site measurements and towing measurements.  相似文献   

17.
A three dimensional time-dependent baroclinic hydrodynamic model, including sediment transport and incorporating a turbulence energy sub-model, is used in cross sectional form to examine sediment movement at the shelf edge off North West Iberia at 42°40.5’N where measurements were made as part of the OMEX-II programme. These calculations are complemented by a simpler, in essence time-independent model, which is used to examine the sensitivity of the sediment distribution over the slope (from a shelf-break source) to changes in the specified values of horizontal and vertical diffusion coefficients. The philosophy of the paper is to use idealized tidal, wind and wind wave forcing to examine changes in sediment distribution resulting from these processes. Calculations with the time-dependent and steady state models give insight into both the role of events and long-term effects. The steady state model focuses on the off-shelf region, whilst the time-dependent model considers on-shelf events.Tidal calculations showed that for the stratification used here the internal tide in the OMEX region was primarily confined to the shelf edge and ocean. A mean on-shelf sediment transport in the surface layer and off-shelf transport at the bed was found. Across-shelf circulations produced by up-welling/down-welling favourable winds gave rise to on-shelf/off-shelf currents in the bottom boundary layer with an opposite flow in the surface layer. In the case of an up-welling favourable wind, sediment suspension was at a maximum in the near coastal region, with sediment being advected off shore in the surface layer. With a down-welling favourable wind, surface sediment was advected towards the shore, but there was offshore transport at the bed. Near the shelf edge any upwelling flow had the tendency to return this sediment to the surface layer from whence it was transported on-shore. So in essence the sediment was trapped within an on-shelf circulation cell. Wind waves effects increased the total bed stress and hence the sediment concentration and its transport, although its pattern was determined by tidal and wind forcing.The time independent model with increased/decreased lateral diffusivity gave an enhanced/reduced horizontal sediment distribution for a given settling velocity. As the settling velocity increases, the down-slope movement of sediment is increased, with a reduction in the thickness of the near-bed sediment layer, but with little change in its horizontal extent.  相似文献   

18.
《Coastal Engineering》2006,53(11):897-913
For the general purposes of morphodynamic computations in coastal zones, simple formula-based models are usually employed to evaluate sediment transport. Sediment transport rates are computed as a function of the bottom shear stress or the near bed flow velocity and it is generally assumed that the sediment particles react immediately to changes in flow conditions. It has been recognized, through recent laboratory experiments in both rippled and plane bed sheet flow conditions that sediment reacts to the flow in a complex manner, involving non-steady processes resulting from memory and settling/entrainment delay effects. These processes may be important in the cross-shore direction, where sediment transport is mainly caused by the oscillatory motions induced by surface short gravity waves.The aim of the present work is to develop a semi-unsteady, practical model, to predict the total (bed load and suspended load) sediment transport rates in wave or combined wave-current flow conditions that are characteristic of the coastal zone. The unsteady effects are reproduced indirectly by taking into account the delayed settling of sediment particles. The net sediment transport rates are computed from the total bottom shear stress and the model takes into account the velocity and acceleration asymmetries of the waves as they propagate towards the shore.A comparison has been carried out between the computed net sediment transport rates with a large data set of experimental results for different flow conditions (wave-current flows, purely oscillatory flow, skewed waves and steady currents) in different regimes (plane bed and rippled bed) with fine, medium and coarse uniform sand. The numerical results obtained are reasonably accurate within a factor of 2. Based on this analysis, the limits and validity of the present formulation are discussed.  相似文献   

19.
强潮环境下悬沙对底部边界层的影响   总被引:1,自引:0,他引:1  
王韫玮  高抒 《海洋科学》2010,34(1):52-57
对杭州湾金山深槽附近两个定点站位的大潮期间同步水文、泥沙观测结果进行了粉砂分布区再悬浮效应的分析,提出了根据再悬浮过程反演底床切应力的新方法。研究结果表明,在强潮动力、高悬沙质量浓度环境下,即使无密度成层性,悬沙质量浓度对底部边界层的影响仍然存在,表现为底部切应力的减小。在这一条件下,如仍然采用卡门-普朗特模型(κ=0.4),则估算的底部切应力将大大高于实际的数值。  相似文献   

20.
《Coastal Engineering》2001,42(2):173-197
Intra-wave sediment suspension is examined using high-resolution field measurements and numerical hydrodynamic and sediment models within 120 mm of a plane seabed under natural asymmetric waves. The detailed measurements of suspended sediment concentration (at 5 mm vertical resolution and at 4 Hz) showed two or three entrainment bursts around peak flow under the wave crest and another at flow reversal during the decelerating phase. At flow reversal, the mixing length was found to be approximately double the value attained at peak flow under the crest. To examine the cause of multiple suspension peaks and increased diffusion at flow reversal, a numerical “side-view” hydrodynamic model was developed to reproduce near-bed wave-induced orbital currents. Predicted currents at the bed and above the wave boundary layer were oppositely directed around flow reversal and this effect became more pronounced with increasing wave asymmetry. When the predicted orbital currents and an enhanced eddy diffusivity during periods of oppositely directed flows were applied in a Lagrangian numerical sediment transport model, unprecedented and extremely close predictions of the measured instantaneous concentrations were obtained. The numerical models were simplified to incorporate only the essential parameters and, by simulating at short time scales, empirical time-averaged parameterisations were not required. Key factors in the sediment model were fall velocities of the full grain size distribution, diffusion, separation of entrainment from settlement, and non-constant, but vertically uniform, eddy diffusivity. Over the plane bed, sediment convection by wave orbital vertical currents was found to have no significant influence on the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号