首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3D time-independent finite difference method is developed to solve for wave sloshing in a three-dimensional tank excited by coupled surge and sway motions. The 3D equations of fluid motion are derived in a moving coordinate system. The three-dimensional tank, with an arbitrary depth and a square base, is subjected to a range of excitation frequencies with motions that exhibit multiple degrees of freedom. For demonstration purposes the numerical scheme is validated by a benchmark study. Five types of sloshing waves were observed when the tank is excited by various excitation frequencies. A spectral analysis identified the resonant frequencies of each type of wave and the results show a strong correlation between resonant modes and the occurrence of the sloshing wave types. The method can be used to simulate fluid sloshing in a 3D tank with six-degrees of freedom.  相似文献   

2.
A coupled numerical model considering nonlinear sloshing flows and the linear ship motions has been developed based on a boundary element method. Hydrodynamic performances of a tank containing internal fluid under regular wave excitations in sway are investigated by the present time-domain simulation model and comparative model tests. The numerical model features well the hydrodynamic performance of a tank and its internal sloshing flows obtained from the experiments. In particular, the numerical simulations of the strong nonlinear sloshing flows at the natural frequency have been validated. The influence of the excitation wave height and wave frequency on ship motions and internal sloshing has been investigated. The magnitude of the internal sloshing increases nonlinearly as the wave excitation increases. It is observed that the asymmetry of the internal sloshing relative to still water surface becomes more pronounced at higher wave excitation. The internal sloshing-induced wave elevation is found to be amplitude-modulated. The frequency of the amplitude modulation envelope is determined by the difference between the incident wave frequency and the natural frequency of the internal sloshing. Furthermore, the coupling mechanism between ship motions and internal sloshing is discussed.  相似文献   

3.
In this work the analysis of sloshing of water in rectangular open tanks has been extensively carried out. Two mathematical models are employed, respectively the Reynolds Averaged Navier Stokes Equations (RANSE) and the Shallow Water Equations (SWE). The RANSE are solved using a modified form of the well established MAC method (SIMAC) able to treat both the free surface motion and the viscous stresses over the rigid walls accurately. The Shallow Water Equations are solved by means of a simple and powerful algorithm (CE-SE) able to deal with large impacting waves over the tank walls.Successively, in order to validate the mentioned algorithms and for a better understanding of the sloshing phenomenon, experimental tests have been carried out using a 0.5 m breadth rectangular tank in periodic roll motion.It has been shown that RANSE provide more accurate solutions than SWE for small or moderate amplitudes of excitation. In particular in this paper it is proved that the shallow water approximation can be efficiently adopted within liquid depth to tank breadth RATIO = 0.15, when examining the sloshing problem. By increasing the water level inside the tank, results by SWE show large qualitative and quantitative disagreement with experiments. Nevertheless, in the case of large amplitude excitation, when sprays and large breaking waves are expected, SWE provide a fairly good estimate of the sloshing induced waves.Finally a simple baffle configuration inside the tank has been considered. By the analysis of numerical results, it has been observed that the presence of a vertical baffle at the middle of the tank dramatically changes the sloshing response compared to the unbaffled configuration. It produces a jump-like effect, resulting in a weak magnification of the dynamic loads on the vertical walls out of resonance, and a strong reduction of the dynamic loads in the resonance condition.  相似文献   

4.
武军林  魏岗  杜辉  徐峻楠 《海洋科学》2017,41(9):114-122
为进一步探究海洋内孤立波诱导流场对海洋工程结构物以及潜航器的影响,本文采用重力塌陷方法和粒子图像测速(Particle Image velocimetry,PIV)技术在大型分层流水槽中进行内孤立波造波以及内部流速场测量,定量分析了下凹型内孤立波诱导流场结构及其影响因素。研究表明:在密度分层流体中,PIV技术可实现对大幅面内孤立波诱导流场的精细测量以及波动结构特征的准确描述;水平流速在上下层方向相反且在跃层处最小,其剪切作用在波谷附近最强;垂向流动在波前和波后分别为上升和下沉流,两者流速值在距离波谷1/4~1/2波长位置达到最大;在相同内孤立波振幅条件下,上下层流体密度差越大、厚度比越小,则波致流场越强;随着振幅增大,流场结构与Kd V、e Kd V和MCC理论模型对应波幅适用范围的描述相吻合。  相似文献   

5.
Ning  De-zhi  Su  Peng  Zhang  Chong-wei 《中国海洋工程》2019,33(1):34-43
A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanism of this concept. Effects of the foam-layer thickness, excitation amplitude, and excitation frequency on the sloshing properties are analyzed in detail. It is found that the floating layers of solid foam elements do not evidently affect the fundamental natural sloshing frequency of the liquid tank evidently among the considered cases. At the resonant condition, the maximum wave height and dynamic pressure are greatly reduced as the foam-layer thickness increases. Higher-order pressure components on the tank side gradually vanish with the increase of the foam-layer thickness. Cases with different excitation amplitudes are also analyzed. The phenomenon is observed when the wave breaking in the tank can be suppressed by solid foam elements.  相似文献   

6.
This paper aims at developing a modal approach for the non-linear analysis of sloshing in an arbitrary-shape tank under both horizontal and vertical excitations. For this purpose, the perturbation technique is employed and the potential flow is adopted as the liquid sloshing model. The first- and second-order kinematic and dynamic boundary conditions of the liquid-free surface are used along with a boundary element model which is formulated in terms of the velocity potential of the liquid-free surface. The boundary element model is used to determine the natural mode shapes of sloshing and their corresponding frequencies. Using the modal analysis technique, a non-linear model is presented for the calculation of the first- and second-order potential which can be used to obtain a reduced-order model for the sloshing dynamics. The results of the presented model are verified with the analytical solution for the second-order analysis of sloshing in a rectangular tank and very good results were obtained. Also, the second-order sloshing in some other example tanks with complex bed shapes is studied. The second-order resonance conditions of liquid sloshing in the example tanks are investigated and some conclusions are drawn.  相似文献   

7.
MPS方法数值模拟液舱晃荡问题   总被引:1,自引:0,他引:1  
基于无网格粒子法MPS方法(moving particle semi-implicit method)研究了液舱晃荡问题。针对二维矩形液舱晃荡问题进行了数值验证,结果表明MPS方法能够很好地计算晃荡产生的拍击压力。同时将MPS方法应用到带隔板的液舱晃荡问题计算中,分析了二维和三维带隔板液舱晃荡问题。计算结果表明:隔板的存在很大程度地限制了流体的水平运动,隔板附近出现了自由面的翻卷、破碎和融合现象,MPS方法能够很好地模拟这些流动现象。计算得到的波高与实验测得的波高吻合较好,表明MPS方法模拟带隔板的晃荡问题具有一定的可靠性。  相似文献   

8.
Oceanic pycnocline depth is usually inferred from in situ measurements. It is attempted to estimate the depth remotely. As solitary internal waves occur on oceanic pycnocline and propagate along it, it is possible to retrieve the depth indirectly in virtue of the solitary internal waves. A numerical model is presented for retrieving the pycnocline depth from synthetic aperture radar (SAR) images where the solitary internal waves are visible and when ocean waters are fully stratified. This numerical model is constructed by combining the solitary internal wave model and a two-layer ocean model. It is also assumed that the observed groups of solitary internal wave packets on the SAR imagery are generated by local semidiurnal tides. A case study in the East China Sea shows a good agreement with in situ CTD (conductivity-temperature-depth) data.  相似文献   

9.
The problem of liquid sloshing has gained recent attention with the proliferation of liquefied natural gas (LNG) carriers transporting liquids in partially filled tanks. Impact pressures caused by sloshing depend on the tank fill level, period and amplitude of oscillation of the tank. In this paper, we first present the rudiments of a linear potential theory for sloshing motions in a two-dimensional rectangular tank, due to small amplitude sway motions. Although this topic is fundamental, we clarify inconsistencies in the published literature and texts.Numerical investigations were carried out on the sloshing motions in a two-dimensional tank in the sway excitation. The fluid domain was modeled using a finite volume approximation, and the air–water interface was tracked using a volume-of-fluid (VOF) technique. Computational results for free surface elevation and impact pressure are found to be in good agreement with theory and published data. The fill levels were varied from 10% to 95%, and the excitation time periods were varied from 0.8 to 2.8 s for a constant sway amplitude of 0.25 m (peak–peak) at 1:30 scale. The results of the parametric study are compared with theoretical predictions and suggestions are made on incorporating sloshing effects in standard seakeeping analysis for LNG carriers.  相似文献   

10.
A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.  相似文献   

11.
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results, It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.  相似文献   

12.
A time-independent finite-difference method and a fifth-order Runge–Kutta–Felhberg scheme were used to analyze the dynamic responses of sea-wave-induced fully non-linear sloshing fluid in a floating tank. The interaction effect between the fully non-linear sloshing fluid and the floating tank associated with coupled surge, heave and pitch motions of the tank are analyzed for the first time in the present pilot study. For the analysis of fluid motion in the tank, the coordinate system is moving (translating and rotating) with tank motion. The time-dependent water surface of the sloshing fluid is transformed to a horizontal plane and the flow field is mapped on to a rectangular region. The Euler equations as well as the fully non-linear kinematic free surface condition were used in the analysis of the sloshing fluid. The strip theory for linearized harmonic sea-wave loading was adopted to evaluate the regular encounter wave force. In addition, the dynamic coefficients used in the dynamic equations of tank motion were also derived based on strip theory and a harmonic motion of the tank. The characteristics of free and forced tank motions with and without the sloshing effect are studied. By the damping effect, the response of free oscillation will damp out and that of forced oscillation will approach a steady state. Without sea-wave action, the contribution of the sloshing load would enlarge the angular response of tank motion as well as the rise of free surface and the sloshing effect will delay the damping effect on angular displacement. On the contrary, under sea-wave action, the sloshing effect will decrease the dynamic response of tank motion and rise of free surface. The interaction, sloshing and coupling effects are found to be significant and should be considered in the analysis and design of floating tanks.  相似文献   

13.
This study investigates the coupling effects of six degrees of freedom in ship motion with fluid oscillation inside a three-dimensional rectangular container using a novel time domain simulation scheme. During the time marching, the tank-sloshing algorithm is coupled with the vessel-motion algorithm so that the influence of tank sloshing on vessel motions and vice versa can be assessed. Several factors influencing the dynamic behavior of tank–liquid system due to moving ship are also investigated. These factors include container parameters, environmental settings such as the significant wave height, current velocity as well as the direction of wind, wave and flow current acting on the ship. The nonlinear sloshing is studied using a finite element model whereas nonlinear ship motion is simulated using a hybrid marine control system. Computed roll response is compared with the existing results, showing fair agreement. Although the two hull forms and the sea states are not identical, the numerical result shows the same trend of the roll motion when the anti-rolling tanks are considered. Thus, the numerical approach presented in this paper is expected to be very useful and realistic in evaluating the coupling effects of nonlinear sloshing and 6-DOF ship motion.  相似文献   

14.
The interaction between the liquid sloshing in a rectangular tank equipped inside the barge and the barge responses has been investigated through a comprehensive experimental program. The barge was subjected to both regular and random wave excitations under beam sea condition. Three relative fill levels (hs/l) with liquid fill depth (hs) to length of tank (l) ratio of 0.163, 0.325 and 0.488 were considered. In addition, the barge responses of equivalent dry weight condition corresponding to each fill level were measured to understand the influence of sloshing. While the excitation wave frequency equals to first mode natural sloshing frequency, a noticeable decrease in the sway response has been observed. However, the effect of sloshing oscillation on the heave response is insignificant. A split up of roll resonance was observed for the aspect ratio of 0.163 due to the coupling effect of roll motion and sloshing.  相似文献   

15.
Internal waves generated by a baroclinic internal wave impinging on an oceanic ridge are studied. Two stratification models are considered: a two-layer ocean model (with a density jump) and a continuously stratified ocean model (model pycnocline). The results yielded by different stratification models are compared analytically. The analysis makes possible the application of a piecewise-constant approximation of the fluid stratification to study topographically-generated baroclinic tides. Translated by V. Puchkin.  相似文献   

16.
This paper describes the simulation of the flow of a viscous incompressible Newtonian liquid with a free surface. The Navier–Stokes equations are formulated using a streamline upwind Petrov–Galerkin scheme, and solved on a Q-tree-based finite element mesh that adapts to the moving free surface of the liquid. Special attention is given to fitting the mesh correctly to the free surface and solid wall boundaries. Fully non-linear free surface boundary conditions are implemented. Test cases include sloshing free surface motions in a rectangular tank and progressive waves over submerged cylinders.  相似文献   

17.
Three-dimensional liquid sloshing in a tank with baffles   总被引:1,自引:0,他引:1  
A numerical model has been developed to study three-dimensional (3D) liquid sloshing in a tank with baffles. The numerical model solves the spatially averaged Navier-Stokes equations, which are constructed on a non-inertial reference frame having six degree-of-freedom (DOF) of motions. The large-eddy-simulation (LES) approach is employed to model turbulence by using the Smagorinsky sub-grid scale (SGS) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate volume-of-fluid (VOF) method is used to track the distorted and broken free surface. The baffles in the tank are modeled by the concept of virtual boundary force (VBF) method. The numerical model is first validated against the available analytical solution and experimental data for two-dimensional (2D) liquid sloshing in a tank without baffles. The 2D liquid sloshing in tanks with baffles is then investigated. The numerical results are compared with other results from available literatures. Good agreement is obtained. Finally, the model is used to study 3D liquid sloshing in a tank with vertical baffles. The effect of the baffle is investigated and discussed.  相似文献   

18.
Nonlinear modeling of liquid sloshing in a moving rectangular tank   总被引:2,自引:0,他引:2  
A nonlinear liquid sloshing inside a partially filled rectangular tank has been investigated. The fluid is assumed to be homogeneous, isotropic, viscous, Newtonian and exhibit only limited compressibility. The tank is forced to move harmonically along a vertical curve with rolling motion to simulate the actual tank excitation. The volume of fluid technique is used to track the free surface. The model solves the complete Navier–Stokes equations in primitive variables by use of the finite difference approximations. At each time step, a donor–acceptor method is used to transport the volume of fluid function and hence the locations of the free surface. In order to assess the accuracy of the method used, computations are verified through convergence tests and compared with the theoretical solutions and experimental results.  相似文献   

19.
Laboratory experiments are performed in a large stratified fluid flume to examine the characteristics of the load on a submerged slender body that is exerted by a nonstationary internal solitary wave (ISW) from its interaction with a gentle slope. The nonstationary ISW over the slope and its load on the body are measured by using multi-channel conductivity-probe arrays and a specially designed force measurement device, respectively, and the body’s vertical and horizontal positions on the load are determined by analyzing the effects of the incident ISW’s amplitude. The experimental results show that the load on the slender body increases as the incident ISW’s amplitude increases; additionally, the effect of oscillations is enhanced because of the ISW’s distortion, breaking and fission. The oscillating action from fission waves becomes dominant as the amplitude reaches a certain value. Additionally, the load is correlated with body’s vertical position relative to the pycnocline. The magnitudes of the vertical and horizontal forces reach a maximum and minimum in the pycnocline, respectively, and the horizontal force in this direction is the opposite above and below the pycnocline. Compared to a case without a slope, the load on the slender body increases because of the nonstationary ISW, and its effect on the maximum force is transferred to the pycnocline. When the body’s horizontal position is located close to the top of the slope, the direction of the horizontal and vertical forces remains consistent, but its acting time becomes longer. In addition, high-frequency actions on the slender body are impacted by nonstationary ISWs near the slope’s top.  相似文献   

20.
Properties of coastal trapped waves when the pycnocline intersects a sloping bottom are studied using a two-layer model which has slopes in both layers. In this system there is an infinite discrete sequence of modes, and four different sorts of waves exist: the barotropic Kelvin wave, the upper shelf wave, the lower shelf wave and the internal Kelvin-type wave. They all propagate with the coast to their right in the Northern Hemisphere. The upper and lower shelf waves are due to the topographic-effect on the upper-layer and lower-layer slopes, respectively. Their motions are dominant in the respective layers being accompanied by significant interface elevations. The properties of the upper (lower) shelf wave are almost unaffected by the existence of a lower-layer (upper-layer) slope. The motion of the internal Kelvin-type wave is confined to the region around the line where the density interface intersects the bottom slope.The modes, except that with the fastest phase speed (the barotropic Kelvin wave), are assigned mode numbers in order of descending frequency. Characteristics of Mode 1 change with wavenumber; the upper shelf wave for small wavenumbers and the internal Kelvin-type wave for large wavenumbers (high frequencies). The higher modes of Mode 2 and above can be classified into the upper and lower shelf waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号