首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Abstract

Fog, cloud, and precipitation caused by the petrochemical plants in Edmonton, Canada, were studied on some of the coldest days of four winters. Typical morning temperatures were between –15 and –40° C. The investigation includes a comprehensive heat and vapour emission inventory, field studies of the local cloud physics, and observations of plume cloud dispersal and precipitation formation. Five field trips are discussed in detail.

The emission inventory indicated that the petrochemical plants released heat and vapour at a rate comparable to that of the city of a half million people. Thermal circulations in the industrial area were substantial but they were not strong enough to prevent some restriction of visibility when temperatures fell below –25° C, and an area‐wide restriction of visibility as deep ice fog set in at temperatures below –35°C. Widespread cloudiness caused by plant plumes was found to be caused by the combined influence of low temperatures and low wind speeds. Snowfall rates were generally very light but when meteorological conditions were right, the snowfall reduced visibility locally to 100 m and made roadways slippery.  相似文献   

2.
利用2016-2018年库尔勒气象站迁站前后基本气象要素的观测资料进行对比分析,结果显示:(1)平均气温、平均最低气温年、月值均是新站低于旧站,年值分别低2.1℃和4.1℃,年平均最高气温持平;春季气温差值变化相对较小,夏、秋、冬季气温差值变化相对偏大。(2)各月相对湿度新站大于旧站,各季相对湿度差值夏季最大,年平均相对湿度新站比旧站高11%。(3)平均气压新站高于旧站,年平均气压差值为3.2pha。各季差值冬季最大,(4)平均风速新站比旧站偏大0.1m/s,春季、夏季风速大于其他季节;最大风速新站比旧站偏大1.3-6.2m/s;主导风向由ENE转为E。(5)年平均气温、最低气温、平均湿度和年平均气压,迁站前后资料有显著差异,年平均最高气温、平均风速无显著差异。(6)测站周围环境、海拔高度、下垫面、地形等因素是造成新旧站气象要素差异的主要原因。  相似文献   

3.
精细化捕捉风速大小及其变化细节过程,是顺利开展风区大风监控预报预警气象服务的关键理论支撑。本文基于百里风区气象观测站的风速数据,对质量控制后的2分钟平均风速、大风日数、日最大风速、日极大风速资料进行计算,给出百里风区2005—2020年精细化逐时风速特征。结果表明:(1)随时间分辨率的提高,24次与4次定时观测值差异明显增大,且偏差随风力等级增高而增大;(2)百里风区风速变化规律与大气环流紧密相关,地形起到加强放大作用。在太阳辐射及地形地貌影响下,百里风区年平均风速8.3 m·s-1,年平均大风日数200.6天,地面风速持续较高;(3)一年中春夏季平均风速最大,且较大风速持续时间长;(4)一日中平均风速高峰时段与大风易发时段不完全重合,平均风速最大值出现在夜间4时前后,大风高发时段峰值集中在17—20时。  相似文献   

4.
In order to characterise the local low-level circulation in the Tyrrhenian Sea coastal area near Rome, the wind field observed by conventional anemometers, Doppler sodar, and rawinsonde has been analysed. The prevailing diurnal behaviour of wind speed and direction as a function of season was highlighted, and the existence of two different patterns of the local circulation, mainly due to land and sea breezes and to the drainage flow from the mouth of the Tiber valley, revealed. The comparison between the low-level circulation and synoptic flow allowed us to determine the influence of the large-scale flow on nocturnal currents that are observed at the Pratica di Mare site and the way that wind direction evolves during the day. Numerical simulations are consistent with experimental data and depict the main features of the low-level wind field in the area.  相似文献   

5.
The variations in several climatological characteristics are studied on the basis of hourly (half-hourly) meteorological terminal observations at 51 aerodromes of the Russian Federation in 2001–2015. For every aerodrome extreme temperature, wind speed and gusts, and QNH are analyzed for the above period. Using data for three consecutive 5-year periods, variations in the number of days with temperature above 30°C or below -30°C, with wind speed of ≥10 m/s and gusts of ≥15 m/s are considered. The occurrence frequency of significant weather events affecting the takeoff and landing (fog, blizzard, freezing precipitation, thunderstorm) is investigated. The results for aerodromes with positive or negative trends in the occurrence frequency of weather phenomena in 2001–2015 are presented.  相似文献   

6.
利用2017年151个地面气象站的逐时观测数据和相关高空资料分析关中盆地近地面风场与输送特征。首先分析盆地内代表性站点的风速和风向观测事实,然后用CALMET风场诊断模式和轨迹计算模式获取当地逐小时风场和每日逐小时传输轨迹,分析风场类型。结果表明:关中盆地内日平均风速约1~3 m s?1,夏季风速高、秋冬季低;盆地中央的主导风向以沿地形走向的东北风和西南风为主,盆地四周测站的主导风向表现出顺着地形向盆地中央汇流的趋势。各站主导风向的季节变化不大。盆地内风场分为系统控制型、弱天气背景型和局地环流型3类,全年出现日数比例分别占8%、17.3%和74.7%。以山谷风日夜循环为特征的局地环流型风场最多。以西安城区为源点的大气输送轨迹显示,系统控制型风场以偏东北方向的输送为主,弱天气背景型和局地环流型风场的轨迹输送都大致以偏东北和偏西(以及偏西南)沿盆地走向以及偏东南朝向秦岭山地这三个方向为主。局地环流型的轨迹影响范围小,集中于盆地中央和南侧山地之间,表明这是一种不利于污染扩散的风场类型。  相似文献   

7.
Haze-to-fog transformation during a long lasting, low visibility episode was examined using the observations from a comprehensive field campaign conducted in Nanjing, China during 4-9 December 2013. In this episode, haze was transformed into fog and the fog lasted for dozens of hours. The impacts of meteorological factors such as wind, temperature (T) and relative humidity (RH) on haze, transition and fog during this episode were investigated. Results revealed significant differences between haze and fog days, due to their different formation mechanisms. Comparison was made for boundary-layer conditions during hazy days, haze-to-fog days and foggy days. Distributions of wind speed and wind direction as well as synoptic weather conditions around Nanjing had determinative impacts on the occurrences and characteristics of haze and fog. Weakened southerly wind in southern Nanjing resulted in high concentration of pollutants, and haze events occurred frequently during the study period. The wind speed was less than 1 m s-1 in the haze event, which resulted in a stable atmospheric condition and weak dispersion of the pollutants. The height of the temperature inversion was about 400 m during the period. The inversion intensity was weak and the temperature-difference was 4°C km-1 or less in haze, while the inversion was stronger, and temperature-difference was about 6°C km-1, approaching the inversion layer intensity in the fog event. Haze event is strongly influenced by ambient RH. RH values increased, which resulted in haze days evidently increased, suggesting that an increasing fraction of haze events be caused by hygroscopic growth of aerosols, rather than simply by high aerosol loading. When RH was above 90%, haze aerosols started to be transformed from haze to fog. This study calls for more efforts to control emissions to prevent haze events in the region.  相似文献   

8.
利用沪宁高速公路自动气象监测站(AMW)数据,结合NCEP/NCAR的1°×1°格点再分析资料,对2009年12月1—2日发生在沪宁高速公路上的大雾天气过程的能见度演变特征及其与相关气象要素的关系进行了分析,并对大雾形成机理进行了研究。结果表明:能见度与各气象要素之间均呈非线性关系,与相对湿度呈稳定的指数衰减关系,与温度及风速呈复杂的多项式关系;高空暖性高压脊和地面变性冷高压的高低空环流配置为雾的形成提供了逆温层结和近地面的弱风场条件;偏东气流和逆温层保证了水汽供应及在低层汇聚;雾区上空的热力因子和动力因子的分析证明了雾区大气层结状态的稳定性。  相似文献   

9.
Summary ?During recent years, numerous studies have examined the Buenos Aires urban climate, but the relationship between large-scale weather conditions and the Buenos Aires urban heat island (UHI) intensity has not been studied. The goal of this paper is to apply an objective synoptic climatological method to identify homogeneous air masses or weather types affecting Buenos Aires during winter, and to relate the results to the UHI intensity. A K-means clustering method was used to define six different air masses considering the 03:00, 09:00, 15:00 and 21:00 LT surface observations of dry bulb temperature, dew point, cloud cover, atmospheric pressure and wind direction and velocity at Ezeiza, the most rural meteorological station of the Buenos Aires metropolitan area (Fig. 1). Results show that the mean UHI intensity is at its maximum (2.8 °C) a few hours before sunrise when conditions are dominated by cold air masses associated with cold-core anticyclones, weak winds and low cloud cover. Inverse heat islands are found during the afternoon for all air masses indicating that surface processes are not dominant at that time. The relatively infrequent and warmest air mass is the only one that presents a mean negative urban-rural temperature difference (−0.1 °C) during the afternoon with the smallest diurnal cycle of the UHI intensity probably due to the prevailing high humidity and cloudy sky conditions. The paper provides an insight into the Buenos Aires urban–rural temperature difference under a variety of winter weather types and results could be useful to improve local daily temperature forecasts for the metropolitan area of Buenos Aires on the basis of the routine forecasts of weather types. Received October 24, 2001; revised June 12, 2002; accepted October 10, 2002  相似文献   

10.
海陀山作为北京冬(残)奥会的主要室外赛场之一,其复杂的地形对风场的精细化预报提出了严峻的挑战,亟需开展加密的风场观测提高对复杂地形下局地环流特征及其影响机理的认识,并为提升赛区精细化预报与服务提供数据支撑.基于2019年度海陀山观测试验,利用加密自动气象站、激光测风雷达、涡动相关仪、云高仪等多源数据,对海陀山风场的水平...  相似文献   

11.
This paper presents the earliest temperature observations, scheduled every 3–4 h in the 1654–1670 period, which have been recovered and analysed for the first time. The observations belong to the Medici Network, the first international network of meteorological observations, based on eleven stations, the two main ones being Florence and Vallombrosa, Italy. All observations were made with identical thermometers and operational methodology, including outdoor exposure in the shade and in the sunshine to evaluate solar heating, state of the sky, wind direction and precipitation frequency. This paper will consider only the regular temperature series taken in the shade. The observations were made with the newly invented spirit-in-glass thermometer, also known as Little Florentine Thermometer (LFT). The readings have been transformed into modern units of temperature (°C) and time (TMEC). The LFT has been analysed in detail: how it was made, its linearity, calibration and performances. Since the middle of the LIA, the climate in Florence has shown less than 0.18°C warming. However, although the yearly average showed little change, the seasonal departures are greater, i.e. warmer summers, colder winters and unstable mid seasons. The temperature in the Vallombrosa mountain station, 1,000 m a.m.s.l, apparently rose more, i.e. 1.41°C. A discussion is made on the interpretation of this finding: how much it is affected by climate change or bias. A continuous swinging of the temperature was observed in the Mediterranean area, as documented by the long instrumental observations over the 1654–2009 period. However, changes in vegetation, or exposure bias might have contributed to reduce the homogeneity of the series over the centuries.  相似文献   

12.
为了获取大气湍流和空间三维风场结构,利用3台同型号的测风激光雷达开展协同观测试验。(1)利用虚拟铁塔协同观测技术开展大气湍流探测,与香河102 m铁塔安装的三维超声风速仪观测结果做对比,32 m处高频(10 Hz)风速的相关系数高达0.92,平均误差为0.77 m/s,均方根误差为0.41 m/s;大气湍流强度(TKE)的相关系数高达0.99,平均误差为?0.02 m2/s2,均方根误差为0.08 m2/s2,并且协同观测的高频风速与三维超声风速仪的观测结果具有相同的频谱结构。(2)利用扫描协同观测技术开展三维风场探测,与铁塔上的常规测风设备相比,其90 m高度处的水平风速和风向的相关系数分别为0.92和0.93,平均误差为?0.41 m/s和0°,均方根误差为0.73 m/s和34°。相比于单台测风激光雷达,基于3台测风激光雷达协同观测技术具有一定的优势:不需要风场水平均匀的假设、探测精度更高等。但其对观测环境的要求较高:观测路径上不能有遮挡、观测必须协同等。在科研业务应用中,需要根据实际的观测需求合理制定观测方案。   相似文献   

13.
利用那曲市色尼区常规气象观测资料,结合NCEP(1°×1°)、Era5(0.25°×0.25°)再分析资料,从天气学角度对2019年4月10日藏北一次浓雾天气的形成机制、物理结构特征以及局地性爆发的成因进行诊断分析。结果表明:此次浓雾具有局地爆发性特征;前期积雪融化的水汽蒸发配合风场辐合作用,为此次大雾的形成提供了水汽条件;500 hPa环流背景及边界层内上层暖平流与下层冷平流配置,为大雾的形成提供了弱风与稳定层结条件,从而雾得以发展且维持;夜间少云,地表净辐射加强,降温冷却作用导致水汽达到饱和状态,利于水汽凝结形成无数悬浮于空气里的小雾滴;近地层风速小、逆温及下沉运动使水汽不易向高空扩散,在相对有限的空间内水汽大量汇聚,导致大雾爆发性发展;大雾的局地性与特殊地形关系密切。  相似文献   

14.
The evolution of the planetary boundary layer and the influence of local circulation phenomena over Naples (southern Italy, 40.838° N, 14.183° E, 118 m above sea level) have been studied by systematic lidar measurements of aerosol optical properties and vertical distributions carried out from May 2000 to August 2003, in the course of the EARLINET project. In particular, our data show the development of aerosol layers typically located in the range between 1,000 and 2,300 m, with variable thickness. The optical properties of the observed layers have been determined. In order to analyse the evolution of the planetary boundary layer, detailed observations of complete diurnal cycles have also been performed. The analysis of lidar measurements of vertical profiles of wind speed and wind direction and air mass back-trajectories allowed us to characterize the sea-breeze circulation influence on both the planetary boundary-layer evolution and the observed aerosol vertical distribution.  相似文献   

15.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

16.
Recent climatic trends in the tropical Atlantic   总被引:1,自引:1,他引:0  
A homogeneous monthly data set of sea surface temperature (SST) and pseudo wind stress based on in situ observations is used to investigate the climatic trends over the tropical Atlantic during the last five decades (1964–2012). After a decrease of SST by about 1 °C during 1964–1975, most apparent in the northern tropical region, the entire tropical basin warmed up. That warming was the most substantial (>1 °C) in the eastern tropical ocean and in the longitudinal band of the intertropical convergence zone. Surprisingly, the trade wind system also strengthened over the peirod 1964–2012. Complementary information extracted from other observational data sources confirms the simultaneity of SST warming and the strengthening of the surface winds. Examining data sets of surface heat flux during the last few decades for the same region, we find that the SST warming was not a consequence of atmospheric heat flux forcing. Conversely, we suggest that long-term SST warming drives changes in atmosphere parameters at the sea surface, most notably an increase in latent heat flux, and that an acceleration of the hydrological cycle induces a strengthening of the trade winds and an acceleration of the Hadley circulation. These trends are also accompanied by rising sea levels and upper ocean heat content over similar multi-decadal time scales in the tropical Atlantic. Though more work is needed to fully understand these long term trends, especially what happens from the mid-1970’s, it is likely that changes in ocean circulation involving some combination of the Atlantic meridional overtuning circulation and the subtropical cells are required to explain the observations.  相似文献   

17.
复杂地形局地环流的数值模拟研究   总被引:7,自引:1,他引:6  
采用一个三维中尺度动力学诊断模式,对重庆地区气象场进行了实例模拟,研究了复杂地形和不同下垫面型对流场的动力和热力作用,揭示了中尺度局地环流(山谷风、河陆风)的基本特征和变化规律,模拟结果与实测资料有好的一致性,表明该模式能够成功地模拟复杂地形局地环流。  相似文献   

18.
The Yangtze River Delta Economic Belt is one of the most active and developed areas in China and has experienced quick urbanization with fast economic development. The weather research and forecasting model (WRF), with a single-layer urban canopy parameterization scheme, is used to simulate the influence of urbanization on climate at local and regional scales in this area. The months January and July, over a 5-year period (2003–2007), were selected to represent the winter and summer climate. Two simulation scenarios were designed to investigate the impacts of urbanization: (1) no urban areas and (2) urban land cover determined by MODIS satellite observations in 2005. Simulated near-surface temperature, wind speed and specific humidity agree well with the corresponding measurements. By comparing the simulations of the two scenarios, differences in near-surface temperature, wind speed and precipitation were quantified. The conversion of rural land (mostly irrigation cropland) to urban land cover results in significant changes to near-surface temperature, humidity, wind speed and precipitation. The mean near-surface temperature in urbanized areas increases on average by 0.45?±?0.43°C in winter and 1.9?±?0.55°C in summer; the diurnal temperature range in urbanized areas decreases on average by 0.13?±?0.73°C in winter and 0.55?±?0.84°C in summer. Precipitation increases about 15% over urban or leeward areas in summer and changes slightly in winter. The urbanization impact in summer is stronger and covers a larger area than that in winter due to the regional east-Asian monsoon climate characterized by warm, wet summers and cool, dry winters.  相似文献   

19.
A study of an interesting meteorological episode over the Owens Valley, California, USA during the Terrain-Induced Rotor EXperiment was conducted using a recently adapted statistical interpolation method to retrieve wind-velocity vectors from Doppler lidar data. This vector retrieval method has been adapted from radar data assimilation techniques. Results show that the method allows better preservation of local variations in the flow field than other techniques. In addition, a high resolution Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) run is used to understand the large-scale flow within the valley and compared with lidar retrievals. Observations from 1030 UTC to 1230 UTC (0230 local time to 0430 local time) on March 27, 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from COAMPS and other in-situ instrumentation are used to corroborate and complement these observations. The optimal interpolation technique for Doppler lidar data vector retrieval appears well suited for scenarios with complex spatial variations in the flow field.  相似文献   

20.
利用常规气象观测资料、地面加密自动站资料、NCEP 1°×1°再分析资料、卫星及风廓线雷达和多普勒雷达资料,对2016年7月7日夜间湖北宜昌地区一次致灾极端短时强降水过程,从大尺度环流背景、中尺度特征以及地形等方面进行分析。结果表明:这次局地强降水产生于副热带高压边缘的西南暖湿气流中,表现出中低层中尺度动力抬升强、降水效率高、地形作用明显等特点。峡谷入口处地面中尺度涡旋与强垂直风切变相互作用造成强上升运动为强降水提供了充足的动力条件,较弱的引导气流和山体阻挡作用使得局地降水维持时间长,共同造成了此次极端短时强降水的发生。回波的低质心结构提高了降水效率,降水过程中单体的后向传播也使局地累计雨量增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号