首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The dynamics of the auroral precipitation boundaries in the daytime (0900–1200 MLT) and nighttime (2100–2400 MLT) sectors during two strong magnetic storms of February 8–9, 1986, and March 13–14, 1989, with a Dst value at a maximum of approximately ?300 and ?600 nT, respectively, are studied using the DMSP satellite data. It is shown that, during the main phase of a storm, a shift to lower latitudes of the poleward and equator ward boundaries of the daytime precipitation is observed. In the nighttime sector, the equatorward boundary of the precipitation also shifts to lower latitudes, whereas the position of the poleward boundary depends weakly on the magnetic activity level even in the periods of very strong magnetic disturbances. The increase in the polar cap area occurs mainly due to the equatorward shift of the daytime precipitation. A high correlation degree between the equatorward shift of the poleward boundary of the daytime precipitation and the position of the equatorward boundary of the precipitation at the nighttime side of the Earth is demonstrated. The analysis of the events shows that (1) the magnetic activity level in the nighttime sector of the auroral zone influences considerably the position of the daytime precipitation boundaries during magnetic storms and that (2) the ring current inputs considerably into the value of the Dst variations.  相似文献   

2.
A planetary pattern of substorm development in auroral precipitation has been constructed on the basis of the F6 and F7 satellite observations. The behavior of the auroral injection boundaries and characteristics of precipitating electrons in various precipitation regions during all phases of a statistically mean magnetospheric substorm with an intensity of AL ~ ?400 nT at a maximum is considered in detail. It is shown that during a substorm, the zone of structured auroral oval precipitation AOP and the diffuse auroral zone DAZ are the widest in the nighttime and daytime sectors, respectively. In the daytime sector, all precipitation regions synchronously shift equatorward not only at the origination phase but during the substorm development phase. The strongest shift to low latitudes of the daytime AOP region is observed at a maximum of the development phase. As a result of this shift, the area of the polar cap increases during the phases of substorm origination and development. It is shown that the average position of the precipitation boundaries and the energy fluxes of precipitating electrons at each phase are linearly related to the intensity of a magnetic disturbance. This makes it possible to develop a model of auroral precipitation development during each phase of substorms of any intensity.  相似文献   

3.
4.
A new type of high-latitude magnetic bays is revealed at geomagnetic latitudes higher than 71°, called ??polar substorms.?? It is shown that polar substorms differ from both classical substorms and high-latitude geomagnetic disturbances of the type of polar boundary intensifications (PBIs). While classical substorms start at latitudes below 67° and then expand poleward, polar substorms start almost simultaneously in the evening-night polar region of the oval. In contrast to PBIs, accompanied by auroral streamers expanding southward, polar substorms are accompanied by auroral arcs quickly traveling northward. It is shown that polar substorms are observed before midnight (20?C22 MLT) under weak geomagnetic activity (Kp ?? 2) during the late recovery phase of a magnetic storm. It is shown that a typical feature of polar substorms is the simultaneous excitation of highly intensive Pi2 and Pi3 geomagnetic pulsations at high latitudes, which exceed the typical amplitude of these pulsations at auroral latitudes by more than an order of magnitude. The duration of pulsations is determined by the substorm duration, and their amplitude decreases sharply at geomagnetic latitudes below ??71°. It is suggested that pulsations reflect fluctuations in ionospheric currents connected with polar substorms.  相似文献   

5.
Geomagnetic pulsations of the Pc4–5 type at the Barentsburg Observatory for December 2007 to January 2008 are compared with the auroral intensity variations based on the photometric records at the same observatory. In all cases, auroral pulsations similar in shape are also observed simultaneously with geomagnetic pulsations. In the morning and daytime hours, the pulsation radiance maxima fall on the positive half-periods in the H component at the observation point; in the evening and nighttime hours, they fall on the negative half-periods.  相似文献   

6.
We have analyzed variations in the near-surface atmospheric electric field (Ez) normalized to their daily averages that were simultaneously observed in different high-latitude regions at moderate geomagnetic activity (Kp ∼ 3). The Ez data were measured under fair weather conditions at the Vostok Antarctic research station (Φ′ = −83.5°) in the southern polar cap and at the Hornsund Arctic observatory (Φ′ = 74.0°) on Svalbard close to the polar boundary of the auroral oval in the Northern Hemisphere. It is established that variations in the atmospheric electric field in the polar cap region at the Vostok station are controlled (the correlation coefficient R ∼ 0.7–0.9) by variations in the overhead ionospheric potential. The situation at the Hornsund observatory is more complicated. During intervals when Hornsund occurred below the westward electrojet, the correlation was typically positive with R ∼ 0.60–0.85; however, while this observatory was in the region of the eastern electrojet, the correlation could be negative with R ∼ 0.7–0.8. Normally, during such periods, the westward electrojet was detected polarwards of Hornsund while, according to the SuperDARN radar data, the observatory was located below the negative vortex of the polar ionospheric convection.  相似文献   

7.
A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at \sim0415 MLT) contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (\sim0515 MLT) with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is “pinched off”, and present two alternative explanations in terms of (1) viscous and lobe circulation cells and (2) polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked “viscous-like” momentum transfer across the magnetopause.  相似文献   

8.
The latitudinal distributions of horizontal geomagnetic variations, ΔH, and their time derivatives, ∂H/∂t, were analysed statistically over the three-year period 2003–2005. It appears that the amplitude distributions of horizontal geomagnetic variations and their time derivatives differ systematically between different geomagnetic latitudes and storm intensity levels. We show that the magnetic field variations observed at auroral and polar cap latitudes are under all geomagnetic storm levels comparable in amplitude (in a statistical sense) while they are smaller at subauroral latitudes. In contrast, their time derivatives are clearly the largest at auroral latitudes at all storm levels. These distributions determine in a general sense where and with which probability technological systems and operational procedures may be affected by geomagnetic storms. However, one observes in individual cases that the peak ∂H/∂t (the largest in all horizontal directions) is not necessarily the one which triggers a power system blackout.  相似文献   

9.
The short-term regional responses of the mesosphere–lower thermosphere (MLT) dynamics over Scandinavia to the exceptionally strong solar storms with their accompanying solar proton fluxes on the Earth in late October 2003 have been investigated using radar measurements at Andenes (69°N, 16°E) and Esrange (68°N, 21°E). Several solar activity storms resulted in solar proton events (SPEs) at this time, but a particularly active period of high proton fluxes occurred between 28 and 31 October 2003. The significant temperature drop (∼25 K), detected by the meteor radar at Andenes at altitude ∼90 km, was in line with the enhancement of the proton fluxes and was caused by the dramatic reduction of the ozone in the high-latitude middle atmosphere monitored by satellite measurements. This exceptionally strong phenomenon in late October 2003 was composed of three geomagnetic storms, with the first one occurring in the daytime of 29 October and the other two storms in the nighttime of 29 and 30 October, respectively. The responses of the prevailing wind and the main tides (24- and 12-h tides) were studied in detail. It was found that the response of the MLT dynamics to the first geomagnetic storm occurring in the daytime and accompanied by solar proton fluxes is very different from those to the second and third geomagnetic storms with onsets during the nighttime. Some physical mechanisms have been suggested in order to explain the observed short-term variability of the MLT dynamics. This case study revealed the impact of the SPEs observed in late October 2003 and the timing of the geomagnetic storms on the MLT neutral wind responses observed over Scandinavia.  相似文献   

10.
太阳活动低年南极中山站电离层F层的平均特性   总被引:9,自引:5,他引:4       下载免费PDF全文
根据1995-1997年3年中山站数字式电离层测高仪的数据,分析了中山站不同季 节F层的临频变化特点.中山站夏季主要受太阳光光化电离的影响,F层临频随地方时的变 化与中纬台站相似;两分季,极隙区软电子沉降的作用显著,F层临频随磁地方时而变化,有 较明显的磁中午现象.冬季,太阳全天处于地平线以下,中山站F层临频的变化主要受极隙 区软电子沉降和极区等离子体漂移的影响,其峰值变化处于碰中午和地方时中午之间.中山 站夏季全天都能观测到F层的存在;两分季F层在地方时子夜附近的出现率较少;冬季月份 在磁地方时午后和子夜F层出现率明显减少,这可能与南半球冬季的高纬槽和极洞有关.对 F层不均匀区的分析认为,中山站在t_(LT)为16:00左右处于极光带赤道侧,20:00左右进入极盖 区。  相似文献   

11.
With the medians of the E-layer critical frequency foE measured at Resolute Bay and Casey ionospheric stations located in the polar caps of the Northern and Southern Hemispheres, it is found that these medians are higher at the nighttime hours (2100–0300 LT) in the local winter than in local summer. For Resolute Bay station, which is located above the Arctic Circle, the latter means that the foE median is higher at polar night than at polar day. Thus, the effect of a winter anomaly in the foE median in the nighttime polar cap is detected. The amplitude of that anomaly (the ratio of the local winter foE values to local summer values) could reach 15–20% and 10–15% for Resolute Bay and Casey stations, respectively. It is assumed that the winter anomaly in the foE median in the nighttime polar cap is caused by the winter–summer asymmetry in the accelerated electron energy fluxes precipitating into this region.  相似文献   

12.
The high-latitude ionospheric response to a major magnetic storm on May 15, 1997 is studied and different responses in the polar cap and the auroral oval are highlighted. Depletion of the F2 region electron density occurred in both the polar cap and the auroral zone, but due to different physical processes. The increased recombination rate of O+ ions caused by a strong electric field played a crucial role in the auroral zone. The transport effect, however, especially the strong upward ion flow was also of great importance in the dayside polar cap. During the main phase and the beginning of the recovery phase soft particle precipitation in the polar cap showed a clear relation to the dynamic pressure of the solar wind, with a maximum cross-correlation coefficient of 0.63 at a time lag of 5 min.  相似文献   

13.
A search for Pc3–4 wave activity was performed using data from a trans-Antarctic profile of search-coil magnetometers extending from the auroral zone through cusp latitudes and deep into the polar cap. Pc3–4 pulsations were found to be a ubiquitous element of ULF wave activity in all these regions. The diurnal variations of Pc3 and Pc4 pulsations at different latitudes have been statistically examined using discrimination between wave packets (pulsations) and noise. Daily variations of the Pc3–4 wave power differ for the stations at the polar cap, cusp, and auroral latitudes, which suggests the occurrence of several channels of propagation of upstream wave energy to the ground: via the equatorial magnetosphere, cusp, and lobe/mantle. An additional maximum of Pc3 pulsations during early-morning hours in the polar cap has been detected. This maximum, possibly, is due to the proximity of the geomagnetic field lines at these hours to the exterior cusp. The statistical relation between the occurrence of Pc3–4 pulsations and interplanetary parameters has been examined by analyzing normalized distributions of wave occurrence probability. The dependences of the occurrence probability of Pc3–4 pulsations on the IMF and solar wind parameters are nearly the same at all latitudes, but remarkably different for the Pc3 and Pc4 bands. We conclude that the mechanisms of high-latitude Pc3 and Pc4 pulsations are different: Pc3 waves are generated in the foreshock upstream of the quasi-parallel bow shock, whereas the source of the Pc4 activity is related to magnetospheric activity. Hourly Pc3 power has been found to be strongly dependent on the season: the power ratio between the polar summer and winter seasons is 8. The effect of substantial suppression of the Pc3 amplitudes during the polar night is reasonably well explained by the features of Alfven wave transmission through the ionosphere. Spectral analysis of the daily energy of Pc3 and Pc4 pulsations in the polar cap revealed the occurrence of several periodicities. Periodic modulations with periods 26, 13 and 8–9 days are caused by similar periodicities in the solar wind and IMF parameters, whereas the 18-day periodicity, observed during the polar winter only, is caused, probably, by modulation of the ionospheric conductance by atmospheric planetary waves. The occurrence of the narrow-band Pc3 waves in the polar cap is a challenge to modelers, because so far no band-pass filtering mechanism on open field lines has been identified.  相似文献   

14.
The results of the ground-based optical observations of sunlit auroras, performed at Lovozero and Apatity observatories on April 10 (event 1) and April 27, 2007(event 2), are presented. The observations were performed in the (OI) 557.7 nm emission, using a new equipment based on a Fabry-Pérot interferometer connected to a PhotonMAX CCD camera. During event 1, the observations were performed in the Harang discontinuity region at a low magnetic disturbance. It has been indicated that an auroral arc was located in the polar part of the eastward electrojet, and the arc position coincides with the equatorward boundary of structured precipitation (b2e). During event 2, auroras were observed within the average statistical boundaries of the auroral oval and the region of structured precipitation under the conditions of rather high geomagnetic activity. However, during the period of low geomagnetic activity, discrete auroras were registered at a geomagnetic latitude of ~64° on that day, which is 3°—4° equatorward of the structured precipitation region. Such a low latitudinal position of auroras can be explained by the effect of a high solar wind velocity, which was ~580 km/s during the period of observations.  相似文献   

15.
Precipitation of electrons with energies of 0.3–1.5 MeV has been analyzed based on the CORONAL-F satellite data at polar latitudes of the Northern Hemisphere on December 13, 2003. The instants of electron precipitation have been compared with the ground-based observations of geomagnetic disturbances and auroras near the satellite orbit projection. It has been indicated that precipitation of energetic electrons in the high-latitude nightside sector is accompanied by the simultaneous development of bay-like magnetic field disturbances on the Earth’s surface and the appearance of riometer absorption bursts and Pi3 geomagnetic pulsations, and auroras.  相似文献   

16.
From data of the European incoherent scatter radar EISCAT, and mainly from its tristatic capabilities, statistical models of steady convection in the auroral ionosphere were achieved for various levels of magnetic activity. We propose here to consistently extend these models to the polar cap, by avoiding the use of a predefined convection pattern. Basically, we solve the second-order differential equation governing the polar cap convection potential with the boundary conditions provided by these models. The results display the classical twin-vortex convection pattern, with the cell centres around 17 MLT for the evening cell and largely shifted towards midnight (3–3.5 MLT) for the morning cell, both slightly moving equatorward with activity. For moderate magnetic activities, the convection now appears approximately oriented along the meridian from 10:00 MLT to 22:00 MLT, while in more active situations, it enters the polar cap at prenoon times following the antisunward direction, and then turns to exit around 21:00 MLT. Finally, from these polar cap patterns combined with the auroral statistical models, we build analytical models of the auroral and polar convection expected in steady magnetic conditions.  相似文献   

17.
The peculiarities of the distribution of medium-scale acoustic gravity waves (AGWs) in polar regions according to the data of measurements on board the Dynamics Explorer 2 satellite are studied. Over polar regions of both hemispheres at heights of 250–400 km, wave variations in neutral atmospheric parameters were systematically registered. These variations were identified as AGWs with horizontal wavelengths of 500–650 km. The relative amplitudes of polar AGWs in a neutral concentration reach 10%. Wave trains extend over the polar caps to thousands of kilometers and show a distinct spatial relationship with the auroral oval. A systematic direction is found in AGW propagation from the nighttime sector of the oval into the day-time sector, where wave activity is strictly limited. An assumption is formulated that this restriction is caused by dynamic interactions between AGWs and the zonal wind in the daytime sector of the auroral oval.  相似文献   

18.
Structures controlled by the IMF By sign and season of the year have been detected based on the decomposition of field-aligned current maps constructed using magnetic field measurements on polar low-orbiting satellites. It has been indicated that field-aligned currents have identical structures, composed of the main polar circular current and the return current at the polar cap dayside boundary, at any By sign in the summer hemisphere. Two different types of structures are implemented under winter conditions depending on the By sign. For the northern winter, it is the polar circular current and the return current at the polar cap nightside boundary at By < 0; current sheets are strongly stretched along latitudes below 80° MLat, and only small part of the current is in the noon sector of the polar cap. For the summer winter, the corresponding structures are implemented at opposite By signs. The intensities of the field-aligned currents, originating as a result of the interhemispheric asymmetry and flowing along closed geomagnetic field lines near the polar cap boundary, have been estimated. The maximum of the interhemispheric current density is 0.25 μA m−2 in the summer and 0.1 μA m−2 in the winter; the total current is 5 × 105 and 5 × 104 A, respectively.  相似文献   

19.
The technique for determining the spatial location of the polar cap, auroral oval, and subauroral zone of the high-latitude space, based on the geomagnetic data from the Greenland chain of magnetic stations, is proposed. The belonging of a specific station to one of the zones is determined based on the results of operation of a self-learning classification artificial neural network of a Kohonen-layer type. The amplitude-frequency spectra and the matrices of wavelet coefficients for analyzing data from the magnetic observation network are the input calculation parameters.  相似文献   

20.
Statistical study on the universal time variations in the mean hourly auroral electrojet index (AE-index) has been undertaken for a 21 y period over two solar cycles (1957–1968 and 1978–1986). The analysis, applied to isolated auroral substorm onsets (inferred from rapid variations in the AE-index) and to the bulk of the AE data, indicates that the maximum in auroral activity is largely confined to 09–18 UT, with a distinct minimum at 03–06 UT. The diurnal effect was clearly present throughout all seasons in the first cycle but was mainly limited to northern winter in the second cycle. Severe storms (AE > 1000 nT) tended to occur between 9–18 UT irrespective of the seasons whereas all larger magnetic disturbances (AE > 500 nT) tended to occur in this time interval mostly in winter. On the whole the diurnal trend was strong in winter, intermediate at equinox and weak in summer. The implication of this study is that Eastern Siberia, Japan and Australia are mostly at night, during the period of maximum auroral activity whereas Europe and Eastern America are then mostly at daytime. The minimum of auroral activity coincides with near-midnight conditions in Eastern America. It appears that the diurnal UT distribution in the AE-index reflects a diurnal change between interplanetary magnetic field orientation and the Earths magnetic dipole inclination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号