首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Land and water resources development plans are generally adopted at watershed level. Delineation of watersheds and their prioritization within large river basins requires host of terrain parameters to be studied and analysed. Chopan watershed in Central India has been studied for sub-watershed delineation and prioritization based on drainage morphometry, land use/land cover and sediment yield index analysis using remote sensing and GIS techniques. The watershed was demarcated into five sub-watersheds on the basis of drainage flow directions, contour value, slope, elevation. Geocoded satellite data of 1989 and 2001 on 1:50 000 scale were visually interpreted to prepare land use/land cover and drainage maps which were later digitized using Arcview/ArcGIS. Linear and shape aspects of the sub-watersheds were computed and used for prioritization. The results show widespread variation in drainage characteristics, land cover changes and sediment yield rates across sub-watersheds. On the basis of morphometric, land use/land cover change and sediment yield index, sub-watersheds were grouped into low, medium and high priority. A correlation of results show that SW1 and SW5 are common sub-watersheds falling under high and low priority based on morphometric, land use change analysis and SYI. The priority list of sub-watersheds will be crucial for decision making and implementation of land and water resource conservation projects.  相似文献   

2.
Effective information regarding environmental responses to future land-use and climate change scenarios provides useful support for decision making in land use planning, management and policies. This study developed an approach for modeling and examining the impacts of future land-use and climate change scenarios on streamflow, surface runoff and groundwater discharge using an empirical land-use change model, a watershed hydrological model based on various land use policies and climate change scenarios in an urbanizing watershed in Taiwan. The results of the study indicated that various demand and conversion policies had different levels of impact on hydrological components in all land-use scenarios in the study watershed. Climate changes were projected to have a greater impact in increasing surface runoff and reducing groundwater discharge than are land use changes. Additionally, the spatial distributions of land-use changes also influenced hydrological processes in both downstream and upstream areas, particularly in the downstream watershed. The impacts on hydrological components when considering both land use and climate changes exceeded those when only considering land use changes or climate changes, particularly on surface runoff and groundwater discharge. However, the proposed approach provided a useful source of information for assessing the responses of land use and hydrological processes to future land use and climate changes.  相似文献   

3.
数字高程模型在流域水文模型应用中的若干问题   总被引:8,自引:1,他引:8  
孔凡哲  芮孝芳 《水文》2002,22(5):1-4
数字高程模型(DEM)在流域水文模型中得到了广泛应用,主要是因为DEM能够自动提取流域水文模型所需要的确定流域排水结构的水文信息。回顾并讨论了DEM在流域水文模型应用中的几个问题,主要包括河网自动提取的方法、DEM中排水方向的确定以及封闭洼地的处理,同时还包括在流域水文模型中应用时DEM的结构类型及尺度问题。由于由DEM生成的模拟河网与流域实际河网间存在一定的差别,最后还讨论了如何对模拟河网进行矫正的问题。  相似文献   

4.
数字高程模型预处理方法的研究进展   总被引:3,自引:0,他引:3  
数字高程模型(Digital Elevation Model,简称DEM)是地形表面形态属性的数字化表达,被广泛应用于流域水文模拟中河网水系的提取.从DEM直接提取的河网水系及相关的流域地理空间信息,是分布式水文模拟的地理信息平台.由于DEM中洼地和平坦区的存在会影响水流方向的确定和数字河网的正确提取.因此在河网自动提取过程中必须首先对DEM数据进行预处理.本文对国内外各种DEM预处理方法进行了归纳总结.将DEM数据预处理方法分为两大类:分步处理法,以及一体化处理法.分步处理法按处理对象又可分为洼地处理方法和平坦区处理方法两部分;而一体化处理法则采用迭代算法同时对洼地和平地进行处理.  相似文献   

5.

Defining the surface hydrological parameters represents a crucial factor for the sustainable development purposes. In areas with heavy precipitation and rugged topography, these parameters control the occurrence of some natural hazards, from which the flash flood gets the most attention. Traditional methods for the assessment of the surface hydrological parameters are costly, time-consuming and provide information for limited geographic extent. On the other hand, remotely sensed data provide a cost-effective, rapid and wide aerial coverage with adequate accuracy. Geospatial analysis of these remotely sensed data provides a suitable and effective method for the reconnaissance determination of the surface hydrological parameters. In this work, digital elevation models, Landsat 8 satellite images as well as digital maps of soil and land use for Kyushu Island were acquired and analyzed using geographic information system. Surface hydrological parameters were determined in terms of watershed boundaries, soil moisture, initial abstraction as well as flash flood potentiality. Results of this research show a great correlation with historical flash flood events that occurred in the island. The northern parts of the island are subjected to the threat of flash floods. A follow-up is recommended in some areas on the island. As a conclusion, the geospatial analysis performs an accurate reconnaissance method for hydrological analysis at regional scale, which in turn guides the detailed field observation saving time and cost.

  相似文献   

6.
九龙江径流Flashiness指数时空变化分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过分析河流Flashiness指数的时空变异,进而评估水电开发、土地利用变化等人类活动对河流径流时空变异特征的影响。本研究选取地处东南沿海的中尺度流域——九龙江流域,基于1967~2007年近40年的水文资料,利用Flashiness指数、基流指数等重要水文指数,并借助GIS、多元统计分析的方法来识别九龙江北溪与西溪两大干流流域近40年来径流时空变化特征及其影响因素。研究结果表明,九龙江流域近40年来径流特征发生显著的变化,流域面积是影响九龙西溪和北溪径流时空变化的自然因素,大坝建设、水电开发改变了九龙江流域的水文条件,进而影响了径流量的年内分布规律及泥沙输出特征,土地利用变化是影响流域径流特征变化的潜在因子。研究结果可为流域水资源管理提供科学依据。  相似文献   

7.
黑河上游高寒山区集水面积阈值确定方法探讨   总被引:1,自引:0,他引:1  
针对我国高寒山区河流的最佳集水面积阈值确定的问题, 选取黑河上游山区为研究区, 利用SWAT(soil and water assessment tool)模型的流域离散模块(watershed delineator)基于DEM提取河网, 探讨河网总长度与集水面积阈值关系曲线法和适度指数法在高寒山区的适用性. 结果表明: 两种方法所对应的最佳集水面积阈值相差较大, 所提取的河网难以反映河流真实情况, 效果较差, 主要原因是上述方法仅考虑流域面积、地形和几何特征的影响, 缺乏对降水和其他下垫面因子的综合考虑. 相较而言, 利用蓝线河网推求最佳集水面积的适度指数法的效果较好. 在高寒山区进行河网提取时, 应综合考虑影响河网发育的各个因素, 在流域分区的基础上, 通过不同集水面积阈值实验, 获取更高精度的数字河网, 改善分布式水文模型的空间离散效果.  相似文献   

8.
DEM空间分辨率的初步分析   总被引:10,自引:0,他引:10  
分布式模型的输入及其参数具有时空变异性,模型的校正也依赖于网格单元的大小,因此需要确定适当的空间分辨率来描述和控制空间变化。随着分辨率的不同, DEM的精度以及由此提取的流域特征值(如高程、坡度、地形指数、河网长度)在统计特性上也会随之变化。对50 m分辨率的DEM平均取样获得150~950 m的9组DEM,对不同分辨率下提取的流域特征值进行了统计分析,并采用信息熵度量不同分辨率的信息量。  相似文献   

9.
数字地形分析技术在分布式水文建模中的应用   总被引:18,自引:0,他引:18  
论述了在栅格数字高程模型(DEM)的基础上,利用数字地形分析技术来完成地形评价、河网指示、流域分割、子流域参数化等项工作的理论与方法。并结合江西潋水河流域的实际工作进行了详细的说明。研究结果表明,通过数字地形分析的方法,利用栅格DEM实现流域离散化并从中提取分布式水文模型所需要的输入参数是一种行之有效的手段。  相似文献   

10.
GIS/RS是流域水文过程分布式模拟的重要技术支撑。结合泾河流域的实例研究,探讨了GIS支持下,基于栅格DEM流域水文特征的获取,降水、气温等资料的空间插值,以及土壤、植被等下垫面信息在水文模拟单元上的耦合。在此基础上,应用分布式水文模型对泾河流域的水文过程进行模拟。结果表明:所建模型结构上是合理的,在产流计算中泾河25个子流域在水量平衡方面误差均小于5%。潜在蒸发的模拟在趋势上与实测过程基本一致。径流模拟在4个检验站点上与实测过程的相关系数达到0.84~0.93。模型基本能够满足水资源规划与管理的需要。  相似文献   

11.
An attempt has been made to study drainage morphometry and its influence on hydrology of Peddavanka watershed, South India. Drainage networks for the sub-basins were derived from topographical map (1:50,000) and Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) data used for preparing elevation, slope and aspects maps. Geographical information system (GIS) was used in evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that SRTM DEM and GIS-based approach in evaluation of drainage morphometric parameters and their influence on hydrological characteristics at watershed level is more appropriate than the conventional methods. The mean Bifurcation ratio (R b) of the entire basin is 3.88 which indicate that the drainage pattern is not much influenced by geological structures. VIII sub-basin have high elongation ratio (R e), basin relief (B h), Ruggedness number (Rn) and time of concentration (T c). It indicates that the erosion and peak discharges are high in these basins. Therefore, the construction of the check dams and earth dams will help in reducing peak discharge on the main channel. These studies are very useful for implementing rainwater harvesting and watershed management.  相似文献   

12.
闻国静  王妍  刘云根  侯磊 《中国岩溶》2022,41(2):249-258
岩溶湖泊湿地流域作为景观格局变化的热点研究区域,探讨景观格局动态变化及预测趋势,为岩溶流域生态安全研究提供科学依据。应用遥感与地理信息系统技术,结合普者黑岩溶湖泊湿地流域实际情况,分别对该地区1990、1995、2000、2005、2010、2015 年6 期遥感影像进行分类、解译,系统地获取地区景观格局状况,分析动态变化特征,并运用CA-Markov 模型对未来湿地景观格局进行模拟预测。结果表明:1990?2015年普者黑岩溶湿地流域景观格局随时间变化显著,景观破碎化程度总体呈现增加趋势,斑块数(NP)从861增加到889,景观类型的优势斑块面积在逐渐增加,而多样性指数从1.064下降到0.966;2020?2030年普者黑岩溶湿地流域建筑用地、农地和湿地景观类型面积在增加,农地和林地在减少,其中,较为突出的是建筑用地占有率由2.79%上升到2.97%,农地占有率60.12%增加到60.74%,湿地占有率6.67%上升7.02%,而林地占有率由26.70%下降到26.40%。景观格局进行预测可以发现湿地面积、建筑用地面积和农地变化幅度最大,本文相关研究和预测结果可为普者黑流域生态保护提供一定的建议和参考。   相似文献   

13.
The purpose of this study is to produce a landslide susceptibility map for the lower Mae Chaem watershed, northern Thailand using a Geographic Information System (GIS) and remotely sensed images. For this purpose, past landslide locations were identified from satellite images and aerial photographs accompanied by the field surveys to create a landslide inventory map. Ten landslide-inducing factors were used in the susceptibility analysis: elevation, slope angle, slope aspect, lithology, distance from lineament, distance from drainage, precipitation, soil texture, land use/land cover (LULC), and NDVI. The first eight factors were prepared from their associated database while LULC and NDVI maps were generated from Landsat-5 TM images. Landslide susceptibility was analyzed and mapped using the frequency ratio (FR) model that determines the level of correlation between locations of past landslides and the chosen factors and describes it in terms of frequency ratio index. Finally, the output map was validated using the area under the curve (AUC) method where the success rate of 80.06% and the prediction rate of 84.82% were achieved. The obtained map can be used to reduce landslide hazard and assist with proper planning of LULC in the future.  相似文献   

14.
参数区域化方法是解决资料缺乏地区水文模拟和预报的有效手段,主要包括回归法、空间邻近法和属性相似法三类方法,可将有资料流域的水文模型参数移用到资料缺乏流域。首先回顾了区域化方法的基本原理和应用方法,并分析了三类主要区域化方法的适用性。从流域特征因子、水文模型及参数、不确定性探讨三个方面综述了区域化方法的研究进展。分析发现,当前区域化方法缺乏完善的理论基础,流域特征因子选择存在主观性,水文模型及参数的适用性方面研究不足。最后展望了未来的研究重点:(1)多维度适用性比较;(2)水文过程和参数的空间分布规律;(3)参数的尺度问题;(4)参数区域化的不确定性问题。  相似文献   

15.
Earth observation from active microwave satellites such as RADARSAT-1 is an excellent tool to monitor and forecast floods. Two complementary approaches are described in this paper: (a) real time or near-real time monitoring of flood extent and (b) mapping of hydrological properties of drainage basins. Since it can penetrate through clouds, which usually occur during precipitation periods, and due to the fact that it can be programmed with different incidence angles, RADARSAT-1 enables frequent coverage over specific areas of interest. It has been used successfully to monitor a major flood of the Red River in Manitoba in 1997, by providing frequent coverage of the flood during its progression and decrease. Resulting data and images have been useful in planning the emergency measures and in assessing flood damage. RADARSAT has also the ability to characterize hydrological properties of watersheds. It has been used in agricultural catchments in Europe for mapping soil surface roughness, which affects runoff coefficients, concentration time and resistance to erosion processes. Used to complement optical data, RADARSAT has provided information on the status of land use and soil protective cover in drainage basins. This information can then be translated into parameters and coefficients that hydrological models can use for runoff and flood forecasting  相似文献   

16.
大型灌区陆地水循环模式的参数化方案:LWCMPS_ID   总被引:2,自引:0,他引:2  
王旭升  杨金忠 《地学前缘》2005,12(Z1):139-145
地表水系统、地下水系统和土壤植物大气连续体的强烈耦合作用是大型灌区水文过程的基本特点,这导致对大型灌区的陆地水循环和水资源进行评价必须采取综合的方法,然而目前还缺少适用的模拟工具。农业灌区的水文特征与天然流域存在显著差别,常规流域水文模型和陆面过程参数化方案用于大型灌区陆地水循环的分析还存在较大的困难。LWCMPS_ID是本文提出的一个适用于大型灌区陆地水循环模式的参数化方案,采用分块集中参数模型简明地实现了地表水、地下水和土壤水的动力学耦合分析,并且包含了一个土壤水冻结融化的简化模型。对处在黄河流域的内蒙古河套灌区,用LWCMPS_ID进行20 年水文动态的模拟,取得了较好的效果。  相似文献   

17.
年雁云  李新  周剑 《冰川冻土》2013,35(2):420-429
水文数据建模和数据共享是流域科学研究的重点工作, 也是"数字流域"研究的基础.目前集成观测数据和环境信息的流域信息基础设施已经成为"数字地球"技术在流域科学方面的重要应用.以水文数据模型和"协同促进水文科学发展大学联盟"水文信息系统(CUAHSI-HIS)为原型, 设计一个适合于黑河流域的集流域地理数据库、 观测系统数据库和数据共享发布系统于一体的流域水文信息系统.系统实现集成各种观测数据类型、 数据来源及观测数据的流域观测数据库, 通过统一地表和地下水的通用数据模型实现流域地表水和地下水信息的一体化存储管理, 同时存储、 组织和在线共享发布流域相关的观测数据和空间数据, 为流域科学研究提供在线生态环境数据的网络服务以及相应的流域观测数据服务, 有效的推动流域科学计划的研究.  相似文献   

18.
The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.  相似文献   

19.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   

20.
The assessment of freshwater resources in a drainage basin is not only dependent on its hydrologic parameters but also on the socio-economic system driving development in the watershed area; the socio-economic aspect, that is often neglected in hydrologic studies, is one of the novelties of this study. The aim of this paper is twofold: (1) presenting an integrated working methodology and (2) studying a local case of a North African watershed where scarce field data are available. Using this integrated methodology, the effects of climate and land use change on the water resources and the economic development of the Tahadart drainage basin in Northern Morocco have been evaluated. Water salinization, tourism, urbanization, and water withdrawals are a threat to water resources that will increase with future climate change. The Tahadart Basin (Morocco 1,145 km2) is characterized by rain-fed agriculture and by the presence of two water retention basins. Assessment of the effects of climate and land use change on this drainage basin was based on current and future land cover maps obtained from spatial interactions models, climate data (current and future; scenario A1b for the period 2080–2100), and hydrological models for water budget calculations. Land use suitability maps were designed assuming a A1b Special Report on Emissions Scenarios socio-economic development scenario. The most important conclusions for the period 2080–2100 are the following: (1) Freshwater availability within the watershed will likely be affected by a strong increase in evaporation from open water surface bodies due to increased temperature. This increase in evaporation will limit the amount of freshwater that can be stored in the surface reservoirs. (2) Sea level rise will cause flooding and salinization of the coastal area. (3) The risk for drought in winter is likely to increase. The methodology used in this paper is integrated into a decision support tool that is used to quantify change in land use and water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号