首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Coastal Engineering》1999,36(3):197-217
An experiment is described in which wave growth was measured in Manukau Harbour, a New Zealand estuary with relatively large fetches and extensive intertidal flats. Wave spectra were obtained from pressure sensors and current meters placed at six sites across the estuary. The SWAN third-generation spectral model was then used to simulate wave transformation during a part of the study period during which consistent south-westerly winds blew along the instrument transect. The simulations incorporated refraction by currents using output from a circulation model of the estuary. Measured wave variance spectra were compared with the model results, and the contributions of the various processes represented by source terms within the model were compared. It was found that, along with whitecapping, bed friction and exponential growth from wind input, four-wave nonlinear interactions played a dominant role. Some limitations were noted in the discrete interaction approximation which the SWAN model uses to compute the four-wave nonlinear interaction term.  相似文献   

2.
An ocean wind-wave prediction model MRI-II is developed on the basis of the energy balance equation which contains five energy transfer processes, namely, the input by the wind, the nonlinear transfer among the components of windsea by resonant wave-wave interactions, wave breaking, frictional dissipation and the effect of opposing winds. The nonlinear energy transfer is expressed implicitly together with the wind effect by Toba's one-parameter representation of windsea, but neither swell-swell nor swell-windsea resonant interactions are considered. Hypothetical assumptions are introduced to describe wave breaking effects. The numerical constant required in the assumptions of wave breaking is determined through trial test runs for a hindcast performed on the North-western Pacific Ocean. The significant wave height, one-dimensional wave spectrum and two-dimensional wave spectrum hindcasted by this new model are in more reasonable agreement with observations than those obtained with our old model MRI.  相似文献   

3.
This study investigates the effectiveness of a revised whitecapping source term in the spectral wind wave model SWAN (Simulating WAves Nearshore) that is local in frequency space, nonlinear with respect to the variance density and weakly dependent on the wave age. It is investigated whether this alternative whitecapping expression is able to correct the tendency towards underprediction of period measures that has been identified in the default SWAN model. This whitecapping expression is combined with an alternative wind input source term that is more accurate for young waves than the default expression. The shallow water source terms of bottom friction, depth-induced breaking and triad interaction are left unaltered. It is demonstrated that this alternative source term combination yields improved agreement with fetch- and depth-limited growth curves. Moreover, it is shown, by means of a field case over a shelf sea, that the investigated model corrects the erroneous overprediction of wind-sea energy displayed by the default model under combined swell-sea conditions. For a selection of field cases recorded at two shallow lakes, the investigated model generally improves the agreement with observed spectra and integral parameters. The improvement is most notable in the prediction of period measures.  相似文献   

4.
基于小波变换,引入了能刻画风浪局域结构的局域小波能谱。论述了风浪的整体结构与局域结构。指出了在不同时间尺度上,风浪具有不同的局域化特征。提出了风场演化过程中整体的共振在线性相互作用是否存在的质疑。  相似文献   

5.
This paper aims at validating the three-wave quasi-kinetic approximation for the spectral evolution of weakly nonlinear gravity waves in shallow water. The problem is investigated using a one-dimensional numerical wave propagation model, formulated in the spectral representation. This model includes both a nonlinear triad interactions term and a wave breaking dissipation term. Some numerical tests were carried out in order to show the importance of using the triad nonlinear term in wave propagation spectral models, particularly to describe both behavior of the spectral integral parameters and of the spectral shape evolution in shallow water depth. Furthermore; a comparison against different set of experimental observations was carried out. Comparing the numerical results with the experimental observations made it possible to show the modeling efficiency of the three-wave quasi-kinetic approximation.  相似文献   

6.
本文给出了由运动物体所生成内波的基本方程组和对应的谱方程组。该方程组的线性部分是一具有体积源 (其下简称为体源 )的 Sturm- Liouville本征值问题 ,而它的非线性部分是由体源与线性波场相互作用的谱表示。在这类强迫方程的源项中包含了 10类内波谱 ,这些谱最终均可利用内波的振幅谱表示。本文给出了线性波场波要素的谱表示和运动物体生成内波的非线性谱方程可解性的讨论。为了检验所得到的谱方程组 ,文中又进行了该谱方程组线性部分的数值计算。  相似文献   

7.
We investigate the role of different physical mechanisms in the generation of the capillary-gravity wind wave spectrum. This spectrum is calculated by integrating a nonstationary kinetic equation until the solution becomes stready. The mechanisms of spectrum generation under consideration include three-wave interactions, viscous dissipation, energy influx from wind, nonlinear dissipation, and the generation of a parasitic capillary ripple. The three-wave interactions are taken into account as an integral of collisions without additional simplifications. It is shown that the three-wave interactions lead to solution instability if the kinetic equation takes into account only linear sources. To stabilize the solution, the kinetic equation should incorporate a nonlinear dissipation term, which in the range of short gravity waves corresponds to energy losses during wave breaking and microscale wave breaking. In the range of capillary waves, the account of nonlinear dissipation is also needed to ensure a realistic level of the spectrum for large wind velocities. For the steady-state spectrum, the role of three-wave interactions remains essential merely in the range of the minimum of phase velocity, where a trough on the curvature spectrum is formed. At the remaining intervals of the spectrum, the main contribution into the spectral energy balance is provided by the mechanisms of wave injection, nonlinear dissipation, and the generation of parasitic capillaries.  相似文献   

8.
According to the theoretical solutions for the nonlinear three-dimensional gravity surface waves and their interactions with vertical wall previously proposed by the lead author, in this paper an exact second-order random model of the unified wave motion process for nonlinear irregular waves and their interactions with vertical wall in uniform current is formulated, the corresponding theoretical nonlinear spectrum is derived, and the digital simulation model suitable to the use of the FFT (Fast Fourier Tansform) algorithm is also given. Simulations of wave surface, wave pressure, total wave pressure and its moment are performed. The probability properties and statistical characteristics of these realizations are tested, which include the verifications of normality for linear process and of non-normality for nonlinear process; the consistances of the theoretical spectra with simulated ones; the probability properties of apparent characterstics, such as amplitudes, periods, and extremes (maximum and minimum, positive and negative extremes). The statistical analysis and comparisons demonstrate that the proposed theoretical and computing models are realistic and effective, the estimated spectra are in good agreement with the theoretical ones, and the probability properties of the simulated waves are similar to those of the sea waves. At the same time, the simulating computation can be completed rapidly and easily.  相似文献   

9.
In this paper, we present a numerical procedure for solving a 2‐dimensional, compressible, and nonhydrostatic system of equations. A forward‐backward integration scheme is applied to treat high‐frequency and internal gravity waves explicitly. The numerical procedure is shown to be neutral in time as long as a Courant–Friedrichs–Lewy criterion is met. Compared to the leap‐frog‐scheme most models use, this method involves only two time steps, which requires less memory and is also free from unstable computational modes. Hence, a time‐filter is not needed. Advection and diffusion terms are calculated with a time step longer than sound‐wave related terms, so that extensive computer time can be saved. In addition, a new numerical procedure for the free‐slip bottom boundary condition is developed to avoid using inaccurate one‐sided finite difference of pressure in the surface horizontal momentum equation when the terrain effect is considered. We have demonstrated the accuracy and stability of this new model in both linear and nonlinear situations. In linear mountain wave simulations, the model results match the corresponding analytical solution very closely for all three cases presented in this paper. The analytical streamlines for uniform flow over a narrow mountain range were obtained through numerical integration of Queney's mathematical solution. It was found Queney's original diagram is not very accurate. The diagram had to be redrawn before it was used to verify our model results. For nonlinear tests, we simulated the famous 1972 Boulder windstorm and a bubble convection in an isentropic enviroment. Although there are no analytical solutions for the two nonlinear tests, the model results are shown to be very robust in terms of spatial resolution, lateral boundary conditions, and the use of the time-split scheme.  相似文献   

10.
背景误差相关结构的确定是影响海浪同化效果的关键因素之一。集合Kalman滤波是一种较为成熟的同化方法,其可以对背景误差进行实时更新和动态估计,现已广泛应用于海洋和大气领域的研究。本文基于MASNUM-WAM海浪模式,分别采用静态样本集合Kalman滤波和EAKF方法,针对2014年全球海域开展海浪数据同化实验,同化资料为Jason-2卫星高度计数据,利用Saral卫星高度计资料对同化实验结果进行检验。结果表明,两组同化方案均有效提高了海浪模式的模拟水平,EAKF方案在风场变化较大的西风带区域表现显著优于静态样本集合Kalman滤波方案,但总体上两者相差不大。综合考虑计算成本和同化效果,静态样本集合Kalman滤波方案更适用于海浪业务化预报。  相似文献   

11.
对ENVISAT ASAR level2算法固有误差的分析   总被引:1,自引:0,他引:1  
欧洲空间局的ENVISAT ASAR level 2算法是从合成孔径雷达(SAR)单视复图像反演涌浪方向谱的算法.该算法假设双峰海浪谱的SAR图像交叉谱是涌浪的图像交叉谱和风浪的图像交叉谱之和.实际上双峰海浪谱的SAR图像交叉谱中还有一个混合项,正是该混合项导致ENVI-SAT ASAR level 2算法有固有误差.利用遥感仿真的方法分析了不同海况条件下该算法的这一固有误差,结果表明,只有在有效波高较小、或风浪的成分较少、或双峰海浪的传播方向较靠近SAR距离向、或波长较长时固有误差才较小,ENVISAT ASAR level 2算法对海浪谱的反演才较为适用.  相似文献   

12.
This is a Part II of a paper of nonlinearities of wind waves in the deep open ocean. As shown in Part I, bound waves in deep sea are detectable by extracting secondorder Doppler spectra from the Doppler spectra of HF (high-frequency) radio waves scattered from the sea surface. There is a remarkable agreement between the calculated and measured Doppler spectra, considering the noise levels in measured Doppler spectra and the uncertainties in directional properties. The theoretical expression for bound waves is thus verified. Furthermore, the upper limit in calculating the Doppler spectra for the second-order approximation is presented from field observations, although we cannot conclude that it is equivalent to the limitation of the second-order bound wave theory. It is shown that analysis of radio wave scattering by the sea surface is one useful means of understanding the nonlinear properties of ocean waves.  相似文献   

13.
The equations of dynamics of eddy—wave disturbances of two-dimensional stratified flows in an ideal incompressible fluid that are written in a Hamiltonian form are used to study the resonant interaction of waves of discrete and continuous spectra. A gravity—shear wave generated at a jump of the density and vorticity of the undisturbed flow and a wave generated at a weak vorticity jump, which is similar to a wave of a continuous spectrum, participate in the interaction. The equations are written in terms of normal variables to obtain the system of evolution equations for the amplitudes of the interacting waves. The stability condition for eddy—wave disturbances is derived within the framework of the linear theory. It is shown that a cubic nonlinearity may lead to the stabilization of unstable disturbances if the coefficient of the nonlinear term is positive.  相似文献   

14.
15.
以不规则波在缓变地形和缓变流场水域的折射-绕射理论以及风浪的成长、衰减理论为基础,得到近岸区不规则波成长模型。结合近岸波浪特性和海洋工程应用的实际情况,建立综合考虑海岸、折射、白浪、底摩擦、流、风和非线性作用诸因素的近岸不规则波数值计算模型。该模型具有二维波谱特性及实用性。文章力图使模式更合理地反映近岸波浪的传播、成长和衰减规律,而整个计算工作量则较小,可在微型电子计算机上得以实现。  相似文献   

16.
Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave interaction source term in WAVEWATCH Ⅲ has been modified to examine its behavior with tropical cyclone wind forcing. Using high resolution wind input,numerical experiments under idealized wind field and tropical cyclone Bonnie(1998) were designed to evaluate performance of the modified models. Both experiments indicate that the modified models with reduced CD significantly decrease wind energy input into the wave model and then simulate lower significant wave height(SWH) than the original model. However,the effects on spatial distribution of SWH,mean wavelength,mean wave direction,and directional wave spectra are insignificant. Due to the reduced wind energy input,the idealized experiment shows that the modified models simulate lower SWH than the original model in all four quadrants. The decrease in the front quadrants is significantly larger than that in the rear quadrants;it is larger under higher winds than lower winds. The realistic experiment on tropical cyclone Bonnie shows that the modified model with the various downward trends of CD in high winds creates a simulation that agrees best with scanning radar altimeter observations.  相似文献   

17.
波浪与带窄缝方箱作用共振现象的数值模拟   总被引:1,自引:1,他引:0  
By introducing a source term into the Laplace equation, a two-dimensional fully nonlinear time-domain numerical wave flume (NWF) is developed to investigate the resonance induced by the interaction bet...  相似文献   

18.
《Ocean Modelling》2004,6(3-4):405-422
In the last two decades, the Discrete Interaction Approximation (DIA) has been the only economically feasible parameterization for nonlinear wave–wave interactions in operational wind wave models. Its major drawback is its limited accuracy. Several improvements to the DIA have been suggested recently. The present study summarizes these improvements and suggests some new modifications to the DIA. Using inverse modeling techniques, where the potential of various DIAs is assessed by optimal fitting to exact solutions, a comprehensive comparison of the potential of several such improvements is made. An in depth analysis of the behavior of DIAs in full wave models will be the subject of a second study, to be reported elsewhere. The major findings of this study are that: (i) An expanded definition of the representative quadruplet with additional degrees of freedom is necessary for an accurate representation of the exact interactions; (ii) Slowly varying the free parameters in such a DIA as a function of the spectral frequency f results in a (mostly qualitative) improvement; (iii) A DIA with expanded quadruplet definition and with four representative quadruplets is found to reproduce the exact source term accurately; (iv) Adding additional tunable constants to the equation for the strength of the interactions has little impact on the quality of the DIA.  相似文献   

19.
Evolution and breaking of a propagating internal wave in stratified ocean   总被引:2,自引:2,他引:0  
The evolution and breaking of a propagating internal wave are directly numerically simulated using a pseudo-spectral method. The mechanism of PSI ( parametric subharmonic instability) involved in the evolution is testified clearly. It dominates gradually in nonlinear resonant interactions. As a consequence, the energy cascades to a second plant wave packet which has lower frequencies and higher wavenumbers than that of the primary wave. With the growth of this wave packet, wave breaking occurs and causes strongly nonlinear regime, i.e. stratified turbulence. The strong mixing and intermittent of the turbulence can be learned from the evolution of the total energy and kurtosis of vorticity vs. time. Some statistic properties of the stratified turbulence are also analyzed, including the spectra of KE (kinetic energy) and PE (potential energy). The results show that the PE spectra display a wavenumber range scaling as 0. 2 N^4ky^-3 (N is the Brunt - Vaisala frequency, k, is the vertical wavenumber), which is called buoyancy sub-range. However, the KE spectra cannot satisfy the negative cubic law of vertical wavenumber, which have a much larger downtrend than that of the PE spectra, for the potential energy is transferred more efficiently toward small scales than the kinetic energy. The Cox number of diapycnal diffusivity is also calculated, and it shows a good consistency with the observations and deductions in the ocean interior, during the stage of the stratified turbulence maintaining a fairly active level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号