首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air–water gas exchange is an important process in aquatic systems, including tidal rivers and estuaries. While there are now reliable and routine methods for determining gas exchange over a range of temporal and spatial scales in the ocean and these measurements have resulted in widely used wind speed parameterizations to calculate air–sea gas exchange, the same has not been true for coastal inland waterways. Some studies have suggested that this difference is methodological, while others point to the existence of additional drivers for gas exchange besides wind in rivers and estuaries. Here, we present gas transfer velocities measured in the tidal Hudson River with a method widely used in oceanic studies, the 3He/SF6 dual tracer technique. Airside and waterside forcings were determined with an anemometer and an acoustic Doppler current profiler, respectively. The results confirm that wind is the dominant driver of gas exchange in the tidal Hudson River, with negligible contribution from bottom-generated turbulence. Furthermore, a parameterization between wind speed and gas exchange developed for the ocean is able to predict gas exchange in this environment with high accuracy. It is hoped that by transferring methodology used in oceanic studies to rivers and estuaries, robust data can be obtained that will eventually allow development of widely applicable relationships between easily measured environmental variables and gas exchange in tidal inland waters.  相似文献   

2.
Oxygen air-water gas exchange was measured using floating chambers in two shallow tidal estuaries of differing bathymetry and local terrain, near Waquoit Bay, Massachusetts (United States). The specific chamber design permitted measurements of gas flux in 15 min, allowing analysis of the relationship with wind speed and tidal stage. Exchange coefficients ranged from 0.5 to 2.5 g O2·m?2 h?1 atm?1 (equivalent to piston velocities of 1.5 to 7 cm h?1) for wind speeds of 0.3 to 9 m s?1 at 10 m elevation. While the relationships for each estuary appear linear (significant linear regressions with wind speed were shown for each estuary, and the slopes were different at the 99.5% confidence level), the range of speeds differed at the two sites and an exponential function of wind speed was consistent with the combined data from both estuaries. A power function of wind speed was not an acceptable model. The exchange coefficients for our estuaries are from 57% to as low as 9% of that predicted by previously published generic equations. Because the atmospheric correction can be significant in shallow, metabolically active coastal waters, we suggest that empirically determined relationships for gas exchange versus wind for a specific estuary are preferable to the predictions of the general equations. While the floating chamber method should be used cautiously, at low winds speeds (below 8 m s?1) and in slowly flowing waters, it provides a convenient approach for quantifying these site-specific differences. The differences, especially those between shallow sheltered systems and the open waters best fit by some published relationships, are ecologically important and do not appear yet to be measurable by other methods.  相似文献   

3.
We report a large set of 295 interfacial carbon dioxide (CO2) flux measurements obtained in the Scheldt estuary in November 2002 and April 2003, using the floating chamber method. From concomitant measurements of the air-water CO2 gradient, we computed the gas transfer velocity of CO2. The gas transfer velocity is well correlated to wind speed and a simple linear regression function gives the most consistent fit to the data. Based on water current measurements, we estimated the contribution of water current induced turbulence to the gas transfer velocity, using the conceptual relationship of O'Connor and Dobbins (1958). This allowed us to construct an empirical relationship to compute the gas transfer velocity of CO2 that accounts for the contribution of wind and water current. Based on this relationship, the spatial and temporal variability of the gas transfer velocity in the Scheldt estuary was investigated. Water currents contribute significantly to the gas transfer velocity, but the spatial and temporal variability (from daily to seasonal scales) is mainly related to wind speed variability.  相似文献   

4.
We investigated the distribution of meroplankton and water properties off southern Washington and simultaneously measured time series of larval abundance and water properties in two adjacent estuaries, Grays Harbor and Willapa Bay. The cruise period, in late May 1999, coincided with large variation in the alongshore wind stress that caused dynamic change in the position of the Columbia River plume, coastal upelling and downwelling, and offshore phytoplankton production. In the coastal ocean, meroplankton groups responded differently to this wind event and the associated advection of water masses. Dungeness crab (Cancer magister) megalopae were largely indifferent to the wide salinity variation, and were found throughout the surveyed area in both plume and recently upwelled waters. Megalopae of kelp crab (Pugettia producta) and hermit crab (Pagurus spp). were more abundant in upwelled water and low numbers were caught in the plume water. Barnacle cyprids appeared to track the advective transport suggesting that they may be more passively dispersed. Within the estuaries, hydrography responded rapidly and synchronously to variation in wind stress. Intrusions of both plume and newly upwelled waters were detected at estuarine sites, depending on the type of water present at the coast, indicating a tight link between the estuaries and the coastal ocean in this region. A 90-d record ofC. magister megalopae abundance was made at 3 estuarine sites using light traps. The bulk of theC. magister recruitment was limited to a relatively brief period in late May through June. Within this window, megalopae occurred in distinct pulses of 3–5 d interspaced with periods of low or zero abundance.C. magister megalopae recruited to the estuaries over a wide range of wind forcing, and were transported into the estuary within varied water types. There were no periodic patterns indicative of spring-neap tidal variations in the abundance time series. Abundance was only weakly cross-correlated between the adjacent Grays Harbor and Willapa Bay estuaries, which contrasts with the more synchronous estuarine-coastal linkages measured for water properties. These results suggest the interaction of larval aggregation size in the ocean with estuary-ocean exchange processes likely controls patterns of estuarine recruitment.  相似文献   

5.
Geographic signatures are physical, chemical, biotic, and human-induced characteristics or processes that help define similar or unique features of estuaries along latitudinal or geographic gradients. Geomorphologically, estuaries of the northeastern U.S., from the Hudson River estuary and northward along the Gulf of Maine shoreline, are highly diverse because of a complex bedrock geology and glacial history. Back-barrier estuaries and lagoons occur within the northeast region, but the domiant type is the drowned-river valley, often with rocky shores. Tidal range and mean depth of northeast estuaries are generally greater when compared to estuaries of the more southern U.S. Atlantic coast and Gulf of Mexico. Because of small estuarine drainage basins, low riverine flows, a bedrock substrate, and dense forest cover, sediment loads in northeast estuaries are generally quite low and water clarity is high. Tidal marshes, seagrass meadows, intertidal mudflats, and rocky shores represent major habitat types that fringe northeast estuaries, supporting commercially-important fauna, forage nekton and benthos, and coastal bird communities, while also serving as links between deeper estuarine waters and habitats through detritus-based pathways. Regarding land use and water quality trends, portions of the northeast have a history of over a century of intense urbanization as reflected in increased total nitrogen and total phosphorus loadings to estuaries, with wastewater treatment facilities and atmospheric deposition being major sources. Agricultural inputs are relatively minor throughout the northeast, with relative importance increasing for coastal plain estuaries. Identifying geographic signatures provides an objective means for comparing the structure, function, and processes of estuaries along latitudinal gradients.  相似文献   

6.
Retention of Fe flocs, resulting from the mixing of river water and seawater, was examined in three Maine estuaries. Riverine Fe was found to remain fairly conservative with salinity, implying that the process of floccufation does not necessarily remove Fe from water parcels. Laboratory experiments corroborated the field data by demonstrating that neither gravity nor suspended sediment were very effective in removing flocculated Fe from suspension. However, input of a tannery effluent did appear to result in scavenging of Fe from estuarine waters. Flocculated riverine Fe was found to increase considerably the Fe concentrations of estuarine bottom sediments, with the amount of iron per sediment specific surface area dependent on mean river flow entering an estuary. While no long term retention efficiencies could be calculated for these estuaries, it seems likely that a significant portion of flocculated riverine Fe escapes to shelf waters.  相似文献   

7.
Material transfer between estuaries and the nearshore zone has long been of interest, but information on the processes affecting Pacific Northwest estuaries has lagged behind other areas. The west coast of the U.S. is a region of seasonally variable upwelling that results in enhanced phytoplankton production in the nearshore zone. We examined estuarine-nearshore links over time by measuring physical oceanographic variables and chlorophylla concentration from an anchor station in South Slough, Oregon. Data was collected during 24-h cruises conducted at approximately weekly intervals during summer 1996 and spring 1997. The results demonstrate that the physical oceanography of this estuarine site was strongly influenced by the coastal ocean. Marine water reached the estuarine site on every sampled tide, and chlorophylla was clearly advected into the estuary with this ocean water. In contrast, phytoplankton concentrations were comparatively reduced in the estuarine water. There were, however, large fluctuations in the import of chlorophyll over the course of the summer. These variations likely reflect upwelling-generated phytoplankton production in the coastal ocean and subsequent cross-shelf transport to the estuary. Suspension feeding organisms in South Slough likely depend on the advection of this coastally-derived phytoplankton. The large allochthonous chlorophyll input measured for this system appears dissimilar from most estuaries studied to date. Previous investigations have focused on the outwelling and inwelling of materials in estuaries. We must now consider the influence of coastal upwelling and downwelling processes on estuarine material exchange.  相似文献   

8.
Planktonic larvae of estuarine species often develop in the coastal ocean and return to estuaries using favorable currents. This study investigated spatial distributions of brachyuran crab post-larvae during ingress to the Newport River estuary, North Carolina, USA (34°41′ N, 76°40′ W). Nearshore plankton tows were conducted across the inlet to the estuary. Settlement on passive ‘hog’s hair’ collectors was simultaneously monitored in each of four estuarine channels. Callinectes sapidus density was highest east of the inlet, whereas relative estuarine abundance was higher in western channels. In separate sampling with collectors at coastal and estuarine locations, spatial distributions of post-larvae were consistent through time but differed for C. sapidus, Uca spp., and Pachygrapsus transversus. The diel timing of C. sapidus settlement on collectors was determined at the coast and compared to previous studies of settlement in the estuary. Behavioral responses to environmental cues may alter transport pathways from those predicted by hydrodynamic models.  相似文献   

9.
Impacts to shallow-water estuarine habitats should be assessed in a holistic context reflecting both the interrelatedness of habitats that characterize these environments and the history of impacts, human and natural, that have shaped their present ecology. In a holistic context these habitats are considered to be dynamic associations of macrohabitats and micro-habitats, interacting through time to affect the quantity (Q1), quality (Q2), and timing (T) of material and energy transfer within the system. Where data are available, this holistic approach (Q1, Q2 and T or Q2T) allows impacts to be evaluated in a multidimensional framework of time and space. Unfortunately, few data are available to evaluate the long-term implications of timing, the T factor. Recorded observations of most estuarine systems cover tens of years, periods not extensive enough to assess long-term changes to the environment or to distinguish man's impacts from those of nature. Sustained droughts, for example, can cause massive disruption in estuaries, altering habitats and species composition. When these changes occur over periods of 5–10 yr, the changes are difficult to identify and may be attributed to man's activities rather than nature's Using the Hudson River estuary as an example, we have knowledge of historical impacts extending back to the 1700s, ranging from dredging to major droughts. For the Hudson River, recorded observations of rainfall and river flow extend back about 70 yr; however, tree rings provide a more extensive record since tree growth increments are directly dependent upon rainfall. The Hudson River drought record was extended back to 1694 using tree rings. Using the reconstructed record, the relationship between today's conditions—flow and average location of the ocean-derived salt front—can be placed in a historical context. This historical perspective allows us to place present-day human impacts into the contex of long-term natural impacts and to discriminate among these effects. The drought example is particularly relevant to shallow-water habitats because these habitats provide an interface between fresh and marine waters. *** DIRECT SUPPORT *** A01BY074 00008  相似文献   

10.
Esturies throughout much of the South Atlantic Bight (southeastern U.S.) have been considered to be relatively pristine, but are now experiencing elevated concentrations of both organic and inorganic nutrients. As is true in many parts of the world, this eutrophication is correlated with coastal population growth. These estuaries have been assumed to be immune from extended hypoxia, in large part because they are well mixed and do not generally exhibit the water column stratification that is traditionally associated with low concentrations of dissolved oxygen. data presented here show long-term (19 yr) decreases in dissolved oxygen in surface waters of the Skidaway estuary, a pattern that is occurring throughout coastal Georgia. More limited data from bottom waters exhibit the same trend. The decreases in dissolved oxygen occurred at the same time as observed increases in inorganic and organic nutrients and in bacteria concentrations, implying an increase in heterotrophic activity. These observations suggest that traditional paradigms long applied to stratified estuaries, wherein the cycle that leads to hypoxia is initiated by the uptake of inorganic nutrients by autotrophs that are then decomposed below the pycnocline, may need revision for well-mixed estuaries. Heterotrophic community metabolism, stimulated by anthropogenic loading of organic and inorganic nutrients, can overwhelm even vigorous vertical mixing and horizontal exchange to gradually cause declining oxygen concentrations and eventually hypoxia.  相似文献   

11.
Understanding rates of nitrogen cycling in estuaries is crucial for understanding their productivity and resilience to eutrophication. Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, links reduced and oxidized forms of inorganic nitrogen and is therefore an important step of the nitrogen cycle. However, rates of nitrification in estuary waters are poorly characterized. In fall and winter of 2011–2012, we measured nitrification rates throughout the water column of all major regions of San Francisco Bay, a large, turbid, nutrient-rich estuary on the west coast of North America. Nitrification rates were highest in regions furthest from the ocean, including many samples with rates higher than those typically measured in the sea. In bottom waters, nitrification rates were commonly at least twice the magnitude of surface rates. Strong positive correlations were found between nitrification and both suspended particulate matter and ammonium concentration. Our results are consistent with previous studies documenting high nitrification rates in brackish, turbid regions of other estuaries, many of which also showed correlations with suspended sediment and ammonium concentrations. Overall, nitrification in estuary waters appears to play a significant role in the estuarine nitrogen cycle, though the maximum rate of nitrification can differ dramatically between estuaries.  相似文献   

12.
Laboratory experiments indicate that colloidal Fe is aggregated in estuarine waters by a second-order kinetic mechanism. The corresponding rate coefficient is proportional to the square of the salinity. A simple theoretical formulation is presented to describe the distribution of Fe in an estuary, based on observed second-order kinetics. The distribution depends on a single parameter whose value may be determined from measurements of the physical characteristics of the estuary. The theoretical expression accurately predicts observed distributions of Fe in a variety of estuaries, suggesting general applicability.  相似文献   

13.
Salinity is an important determinant of estuarine faunal composition; previous studies, however, have indicated conflicting accounts of continuous vs. relatively rapid change in community structure at certain salinities from geographically distinct estuaries. This study uses a large fisheries monitoring database (n?>?5,000 samples) to explore evidence for estuarine salinity zonation by nekton in the lower St. Johns River estuary (LSJR). There was little evidence to support the presence of estuarine salinity zones except at the extremes of the salinity gradient (i.e., 0.1?C1.0 and 34?C39). The LSJR estuarine nekton community exhibits progressively slow ecological change throughout most of the salinity gradient with rapid change at the interfaces with fresh and marine waters??an ecoline bounded by ecotones. This study affirms the rapid change that occurs at the extremes of the salinity spectrum in certain estuaries and is relevant to efforts to manage surface water resources and estuarine ecosystems. Given the disparity in the results of the studies examining biological salinity zones in estuaries, it would be wise to have, at minimum, a regional understanding of how communities are structured along the gradient from freshwater to marine.  相似文献   

14.
The behaviour of dissolved boron and silicon during mixing of sea and river waters has been studied in two surveys of the estuary of the River Alde in Suffolk, England. Removal of approximately 25–30 per cent was found for both elements. This appears to be the first report of estuarine removal of dissolved boron. The extent of removal of silicon in the Alde is somewhat higher than that found in other estuaries.  相似文献   

15.
We summarize rates of metabolism and major sources and sinks of organic carbon in the 148-k long, tidally influenced, freshwater Hudson River. The river is strongly heterotrophic, with respiration exceeding gross primary production (GPP). The P:R ration averages 0.57 (defined as the ratio of GPP to total ecosystem respiration) if only the aquatic portion of the ecosystem is considered and 0.70 if the emergent marshes are also included. Gross primary production (GPP) by photoplankton averages approximately 300 g C m?2 yr?1 and is an order of magnitude greater than that by submersed macrophytes. However, the river is deep, well mixed, and turbid, and phytoplankton spend a majority of their time in the dark. As a result, respiration by living phytoplankton is extremely high and net primary production (NPP) by phytoplankton is estimated to be only some 6% of GPP. NPP by phytoplankton and submersed macrophytes are roughly equal (approximately 20 g C m?2 yr?1 each) when averaged over the river. Emergent marshes are quite productive, but probably less than 16 g C m?2 yr?1 enters the aquatic portion of the ecosystem from these marshes. Heterotrophic respiration and secondary production in the river are driven primarily by allochthonous inputs of organic matter from terrestrial sources. Rates of metabolism vary along the river, with depth being a critical controlling factor. The P:R ratio for the aquatic portion of the ecosystem varies from 1 in the mid-river to 0.2 in the deeper waters. NPP is actually negative in the downstream waters where average depths are greater since phytoplankton respiration exceeds GPP there; the positive rates of NPP occurring upriver support a downstream advection of phytoplankton to the deeper waters where this C is largely respired away by the algae themselves. This autotrophic respiration contributes significantly to oxygen depletion in the deeper waters of the Hudson. The tidally influenced freshwater Hudson largely fits the patterns predicted by the river continuum model for larger rivers. However, we suggest that the continuum model needs to more clearly distinguish between GPP and NPP and should include the importance of autotrophic respiration by phytoplankton that are advected along a river. The organic carbon budget for the tidally influenced freshwater Hudson is balanced to within a few percent. Respiration (54%) and downstream advection into the saline estuary (41%) are the major losses of organic carbon from the ecosystem. Allochthonous inputs from nonpoint sources on land (61%) and GPP by phytoplankton (28%) are the major sources to the system. Agricultural erosion is the major source of allochthonous inputs. Since agricultural land use increased dramatically in the last century, and has fallen in this century, the carbon cycle of the tidally influenced freshwater Hudson River has probably changed markedly over time. Before human disturbance, the Hudson was probably a less heterotrophic system and may even have been autotrophic, with gross primary production exceeding ecosystem respiration.  相似文献   

16.
Human land use activities around estuaries can result in high levels of eutrophication. At Elkhorn Slough estuary, a highly eutrophic California estuary, we investigated the effects of impaired water quality on two stress-tolerant estuarine species, a common fish, the staghorn sculpin, Leptocottus armatus and a foundational invertebrate, the Olympia oyster, Ostrea lurida. We caged the two indicator species at six wetlands with different levels of water quality impairment, four of which had restricted tidal flow. We also recorded water quality parameters simultaneously at all sites using YSI sondes, and sampled nutrients and chlorophyll-a monthly, building on the National Estuarine Research Reserve System-wide Monitoring Program. We found that the monitored environmental variables predicted ecological responses by the indicator species. In particular, we found that the duration and severity of hypoxia were negatively correlated with fish survival and oyster growth. Further, our results corroborate previous studies that artificial tidal restriction leads to increased hypoxia stress. We conclude that large diurnal fluctuations in dissolved oxygen and extended nighttime hypoxia can have lethal and sub-lethal effects even on stress-tolerant organisms in the estuary. While laboratory experiments have often shown such effects, it is relatively rare to demonstrate negative effects of oxygen variation with in situ experiments, which provide stakeholders with concrete evidence for impaired water quality at local wetlands. Tidally restricted sites, which experience the largest fluctuations in dissolved oxygen and longest periods of hypoxia, harbor conditions harmful to vertebrates and invertebrates in the estuary. Reversing the anthropogenically induced low oxygen levels, by restoring more natural tidal exchange and by decreasing agricultural runoff, could improve the survival and growth of important estuarine organisms.  相似文献   

17.
Research Advance in Air-Water CO2 Exchange of Estuaries   总被引:1,自引:0,他引:1  
Estuary holds a key position in linking the four geo-spheres, i.e., atmosphere, lithosphere, hydrosphere and biosphere. Figuring out the transfer mechanisms of estuarine carbon, especially the exchange ofCO2 at the air water interface is conducive to understanding the carbon pattern in coastal oceans. To date, many fruitful studies have been conducted on the control mechanism towards the partial pressure of CO2 (pCO2) in different estuarine areas around the world. By a thorough research on the latest studies of estuarineCO2 exchange with the atmosphere, it is concluded as follows: ①A common pattern is found on the spatial distribution of pCO2in different estuarine areas. However, the concrete seasonal change of pCO2 shows great differences, and the corresponding control factors also vary considerably. ②Estuaries are believed to be large sources ofCO2 to the atmosphere. It is estimated that the global estuarineCO2 degassing fluxes, although the global surface area of estuariesis small, are up to 0.25×1015~0.50×1015g C/a; and about 1/3 of riverine carbon is released into the atmosphere during the estuarine transit. ③Degradation of organic matter, lateral transfer of marsh derivedCO2 , mineral deposits in water and turbulence in the liquid phase are the main factors that are responsible for the emission of estuarineCO2 . At present, this estimate of estuarineCO2 exchange with the atmosphere is based on limited spatial data, therefore problems such as the limitation in the depth and scope of studies still exist. There are also varieties of uncertainties in the estimation of gas transfer velocity and the whole areas of global estuaries, all of them make it difficult to reach an accurate evaluation ofCO2 fluxes at the air water interface. It is difficult to predict the future trend of theCO2 exchange at the air-water interface due to the complexities of the driving forces and feedback mechanisms in estuarine carbon cycle and the intense anthropogenic disturbance. Investigating the mechanism of pCO2 in estuarine areas, improving the accuracy of evaluation ofCO2 fluxes and comparing studies of different estuaries would be new scopes in the future researches on the exchange ofCO2 at the air-water interface in estuaries.  相似文献   

18.
Eutrophication and the development of persistent opportunistic macroalgal blooms are recognised as one of the main detrimental effects of increased anthropogenic pressures on estuarine and coastal systems. This study aimed to highlight the interplay between pressures and controlling physical factors on ecosystem functioning. The hypothesis that hydrological regime can control the growth of opportunistic macroalgae was tested with the study of two Irish estuaries, the Argideen and the Blackwater, with similar nutrient loading sources but divergent hydrological regimes. Seasonal monitoring data was initially examination, while the application of a pre-existing box model allowed a further analysis of the influence of residence time and nutrient load modifications on macroalgal growth. Seasonal oscillations in monitored river flow rates altered nutrient transfer from the catchments to the estuaries in both cases, as is shown through differences between winter and summer nutrient concentrations. In the Argideen, however, the relative contribution of phosphorus (P) from adjacent marine waters was high due to the shorter residence times and greater influx of marine water into the estuary. Modelling studies showed that in the Argideen Estuary, P load reduction would have potentially minimal impact on macroalgal growth due to the shorter residence time which increased the influx of P from marine sources. Nitrogen (N) load reduction of 60 % had a significant, albeit limited, impact on macroalgae and was insufficient in achieving the environmental objectives for this waterbody. For the more river-dominated Blackwater Estuary, modelled reductions in P resulted in a considerable decrease in biomass. Any further P decreases would accentuate the existing disparity in estuarine N:P ratios with possible repercussions for N transport to the coastal system. Hence, the hydrological complexity of estuarine systems demonstrated dictates that a portfolio of separate, but complimentary, management approaches may be required to address eutrophication in these estuaries.  相似文献   

19.
Five stations on the lower Saint John River, a complex multibasin estuary, were sampled semiquantitatively for zooplankton at biweekly intervals for one year, and qualitatively over a 4-year period. Planktonic Crustacea were dominated by the true estuarine copepods,Acartia tonsa andEurytemora affinis and the euryhaline marine copepodsOithona similis andPseudocalanus minutus. Atypical estuarine forms, confined to a lower fiord-like basin with salinity of 20‰, were the amphipod,Parathemisto abyssorum and the mysidErythrops erythrophthalma. River flows were highly variable from year to year. Certain basins function as lakes in some years and estuaries in other years, causing extreme zooplankton community fluctuations, and succession patterns dependent on salinity rather than season. On occasion freshwater zooplankters maintained viable populations at unusually high salinities (ca. 5‰). Vertical and horizontal distributions of zooplankters indicate that the estuary in fact comprises two systems: a true estuary in the upper reaches and the surface waters at the lower end, and a fiord in a subsidiary basin in the lower end.  相似文献   

20.
The gradient flux technique, which measures the gas transfer velocity (k), and new observational techniques that probe turbulence in the aqueous surface boundary layers were conducted over a tidal cycle in the Plum Island Sound, Massachusetts. Efforts were aimed at testing new methods in an estuarine system and to determine if turbulence created by tidal velocity can be responsible for the short-term variability ink. Measurements were made during a low wind day, at a site with tidal excursions of 2.7 m and a range in tidal velocity of nearly 1 m s−1. Estimates ofk using the gradient flux technique were made simultaneously with the Controlled Flux Technique (CFT), infrared imagery, and high-resolution turbulence measurements, which measure the surface renewal rate, turbulent scales, and the turbulent dissipation rate, respectively. All measurements were conducted from a small mobile catamaran that minimizes air- and water-side flow distortions. Infrared imagery showed considerable variability in the turbulent scales that affect air-water gas exchange. These measurements were consistent with variation in the surface renewal rate (range 0.02 to 2 s−1), the turbulent dissipation rate (range 10−7 to 10−5 W kg−1), andk (range 2.2 to 12.0 cm hr−1). During this low wind day, all variables were shown to correlate with tidal speed. Taken collectively our results indicate the promise of these methods for determining short-term variability in gas transfer and near surface turbulence in estuaries and demonstrate that turbulent transport associated with tidal velocity is a potentially important factor with respect to gas exchange in coastal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号