首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
澳洲大陆热力强迫对南北半球环流异常的影响效应   总被引:9,自引:1,他引:9       下载免费PDF全文
本文采用OSU-AGCM动力框架加入牛顿加热项构成的简化大气环流模式,研究澳洲大陆热力强迫与南北半球环流异常的相关关系。本文对不同平衡温度模拟结果的差异(偏差场)进行了分析,探讨某局地热力强迫对全球其它区域环流异常的影响效应.数值试验结果表明,南北半球海陆热力结构有利于两半球行星尺度经向环流的加强及其低纬跨赤道气流的形成:南半球澳洲大陆热力强迫可以通过东、西风带侧向藕合效应,显著地影响北半球中纬西风带急流状况;二维Rossby波能量频散径向传播可能足澳洲热力强迫与北半球常定环流系统的异常变化相关现象的重要成因,且澳洲大陆强迫产生的径向波列路经与PNA、EU型相似.  相似文献   

2.
The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean—atmosphere—sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard—Oeschger events, may be internal instabilities of the climate system.  相似文献   

3.
The effect of idealized wind-driven circulation changes in the Southern Ocean on atmospheric CO2 and the ocean carbon inventory is investigated using a suite of coarse-resolution, global coupled ocean circulation and biogeochemistry experiments with parameterized eddy activity and only modest changes in surface buoyancy forcing, each experiment integrated for 5,000 years. A positive correlation is obtained between the meridional overturning or residual circulation in the Southern Ocean and atmospheric CO2: stronger or northward-shifted westerly winds in the Southern Hemisphere result in increased residual circulation, greater upwelling of carbon-rich deep waters and oceanic outgassing, which increases atmospheric pCO2 by ~20 μatm; weaker or southward-shifted winds lead to the opposing result. The ocean carbon inventory in our model varies through contrasting changes in the saturated, disequilibrium and biogenic (soft-tissue and carbonate) reservoirs, each varying by O(10–100) PgC, all of which contribute to the net anomaly in atmospheric CO2. Increased residual overturning deepens the global pycnocline, warming the upper ocean and decreasing the saturated carbon reservoir. Increased upwelling of carbon- and nutrient-rich deep waters and inefficient biological activity results in subduction of unutilized nutrients into the ocean interior, decreasing the biogenic carbon reservoir of intermediate and mode waters ventilating the Northern Hemisphere, and making the disequilibrium carbon reservoir more positive in the mode waters due to the reduced residence time at the surface. Wind-induced changes in the model carbon inventory are dominated by the response of the global pycnocline, although there is an additional abyssal response when the peak westerly winds change their latitude, altering their proximity to Drake Passage and changing the depth extent of the southward return flow of the overturning: a northward shift of the westerly winds isolates dense isopycnals, allowing biogenic carbon to accumulate in the deep ocean of the Southern Hemisphere, while a southward shift shoals dense isopycnals that outcrop in the Southern Ocean and reduces the biogenic carbon store in the deep ocean.  相似文献   

4.
温室气体和硫酸盐气溶胶的辐射强迫作用   总被引:9,自引:4,他引:5  
对GOALS4 .0海 陆 气耦合模式的相关部分进行了改进 ,主要改进包括温室气体的扩充和硫酸盐气溶胶“显式”方案的引入 ,并引入 2 0世纪温室气体的实际浓度变化以及硫循环模式模拟的硫酸盐气溶胶的三维全球浓度分布 ,模拟了温室气体和硫酸盐气溶胶造成的辐射强迫的空间分布和时间变化。全球平均的温室气体和硫酸盐气溶胶的辐射强迫分别为 2 .17W /m2 和 - 0 .2 9W /m2 ;温室气体造成的辐射强迫在空间上呈现明显的纬向结构 ,最大值 (大于 2 .5W/m2 )和最小值 (小于 1W /m2 )分别位于副热带和两极地区 ,在北半球主要工业区硫酸盐气溶胶的辐射强迫绝对值接近温室气体的辐射强迫值 (大于 - 2 .0W /m2 )。  相似文献   

5.
Based on the evidence available from both observations and model simulations, the author proposes a view that may provide a unified interpretation of the North Atlantic thermohaline variability. Because of the slow response time of the Southern Ocean (millennia) and the relatively faster response time of the North Atlantic (centuries), the North Atlantic thermohaline circulation is controlled predominantly by the climate forcing over the Southern Ocean at the long glacial cycle timescales, but by the North Atlantic climate forcing at the short millennial timescaies.  相似文献   

6.
105°E和125°E越赤道气流与南、北半球环流变化的关系   总被引:4,自引:2,他引:2  
采用1980~2004年5~8月NCEP/NCAR逐日再分析资料, 将105°E和125°E越赤道气流增强过程按一定标准进行取样, 并对增强过程中越赤道气流的变化特点及其相应的南、 北半球环流特征进行分析, 结果表明: 越赤道气流的增强往往对应着通道南侧或北侧从热带到副热带地区的环流调整, 而这种环流调整在南半球主要指澳洲冷空气活动, 在北半球主要为辐合带的变化, 二者是影响越赤道气流的主要环流因子; 北半球辐合带的变化与西太平洋副高的东西振荡有密切关系, 前者的分布形态在一定程度上决定了南半球环流及越赤道气流变化对北半球热带外环流的影响情况; 125°E越赤道气流比105°E越赤道气流的增强过程通常更为显著, 这与它们对应的南、 北半球环流调整的差异有关。  相似文献   

7.
8.
Yves Plancherel 《Climate Dynamics》2014,42(11-12):2983-3004
A comparative analysis of the state and response of the latitude–depth meridional overturning streamfunctions in the Climate Model Inter-comparison Project 3 (CMIP3) model set is presented. Simulated overturning strengths of the North Atlantic cell tend to converge towards observational estimates. The models whose simulations of the North Atlantic cell are closest to observational estimates indicate a 29.5 ± 13 % decrease in the maximum intensity of that cell by 2,100. In contrast, agreement with regard to the state and the response to anthropogenic radiative forcing of the global Southern Ocean abyssal cell is poor among the models. A weak relationship between the mean state and the response of the abyssal cell can be used to constrain the reduction of the Southern abyssal cell by 2,100 to 29.3 ± 20.7 %, in rough agreement with the decrease predicted in the Northern cell. The biases across the CMIP3 models in the Northern deep cell and Southern abyssal cell cannot be related dynamically by a buoyancy-based seesaw-like argument. The absence or presence of characteristic relationships between the state and evolution of different features of the overturning streamfunction indicate that the main reasons for across-model spread are how each model deals with subgrid-scale processes and viscosity. This highlights the fact that subgrid-scale parameterizations and resolution improvements should be a priority of model development. These factors are able to explain qualitatively the inter-model differences between the Northern overturning cells of the different models. Across-model differences in the winds over the Southern Ocean are responsible for much of the disparity in the overturning circulation cells of the Southern Ocean.  相似文献   

9.
The mechanisms controlling the decadal to multidecadal variability of the Atlantic Meridional Overturning Circulation (MOC) and its influence on the atmosphere are investigated using a control simulation with the IPSL-CM4 climate model. The multidecadal fluctuations of the MOC are mostly driven by deep convection in the subpolar gyre, which occurs south of Iceland in the model. The latter is primarily influenced by the anomalous advection of salinity due to changes in the East Atlantic Pattern (EAP), which is the second mode of atmospheric variability in the North Atlantic region. The North Atlantic Oscillation is the dominant mode, but it plays a secondary role in the MOC fluctuations. During summer, the MOC variability is shown to have a significant impact on the atmosphere in the North Atlantic–European sector. The MOC influence is due to an interhemispheric sea surface temperature (SST) anomaly with opposite signs in the two hemispheres but largest amplitude in the northern one. The SST pattern driven by the MOC mostly resembles the model Atlantic Multidecadal Oscillation (AMO) and bears some similarity with the observed one. It is shown that the AMO reflects both the MOC influence and the local atmospheric forcing. Hence, the MOC influence on climate is best detected using lagged relations between climatic fields. The atmospheric response resembles the EAP, in a phase that might induce a weak positive feedback on the MOC.  相似文献   

10.
The mechanism is investigated by which extratropical thermal forcing with a finite zonal extent produces global impact. The goal is to understand the near-global response to a weakened Atlantic meridional overturning circulation suggested by paleoclimate data and modeling studies. An atmospheric model coupled to an aquaplanet slab mixed layer ocean, in which the unperturbed climate is zonally symmetric, is perturbed by prescribing cooling of the mixed layer in the Northern Hemisphere and heating of equal magnitude in the Southern Hemisphere, over some finite range of longitudes. In the case of heating/cooling confined to the extratropics, the zonally asymmetric forcing is homogenized by midlatitude westerlies and extratropical eddies before passing on to the tropics, inducing a zonally symmetric tropical response. In addition, the zonal mean responses vary little as the zonal extent of the forced region is changed, holding the zonal mean heating fixed, implying little impact of stationary eddies on the zonal mean. In contrast, when the heating/cooling is confined to the tropics, the zonally asymmetric forcing produces a highly localized response with slight westward extension, due to advection by mean easterly trade winds. Regardless of the forcing location, neither the spatial structure nor the zonal mean responses are strongly affected by wind–evaporation–sea surface temperature feedback.  相似文献   

11.
南半球环流与西太平洋副热带高压和台风群中期活动的关系   总被引:12,自引:2,他引:10  
通过对南北半球环流6年资料的分析,发现在北半球夏季5~8月,南半球中纬西风指数、低纬西风指数、赤道气压指标与北半球西太平洋副热带高压和台风群的中期活动均有较好的关系。在台风群活跃的年份,台风群生成阶段前后,环流变化由南半球中纬先开始,随后南半球低纬和赤道地区环流也出现变化,赤道气压指标到达低值,此后,北半球西太平洋副热带高压的特征产生一系列的变化,上述南北半球环流系统变化的传播过程为准二周周期。  相似文献   

12.
魏民  仇永炎 《气象学报》1995,53(2):238-246
利用ECMWF提供的9a(198O-1988)资料,从定性和定量角度分析500hPa全球东西风带的角动量和EP通量的季节过渡。结果发现:不仅角动量存在明显的季节性急变,而且反映波活动的EP通量也存在相应的季节性急变。另外,季节性急变的发生时间在东西风带亦有所不同。  相似文献   

13.
根据10年实测风资料,在分析南、北半球纬向风场和经向风场演变的基础上,发现长江中下游6—7月持续性多雨年的大气环流的季节变化上有异常现象;即在南半球比常年提前1—2个月结束夏季,在北半球比常年推迟1—2个月进入盛夏。这种异常现象表明长江中下游持续性多雨是全球尺度大气环流异常的反映,为持续性多雨的长期预报提供了新的依据。  相似文献   

14.
The results of spectroscopic total column measurements of CO and CH4 at different points of the Northern and Southern Hemispheres in 1970–1985, are reported. Seasonal cycles of CO are evident for all the sites. The Northern Hemispheric long-term positive trend of CO seems to be 1.5–2% per year. In the Southern Hemisphere, temporal increasing was not detected and a possible upper limit for it is about 0.6% per year. Methane concentration in the Northern Hemisphere increases at a rate of 1.2% per year.  相似文献   

15.
全球大气温度廓线的统计特性分析   总被引:1,自引:0,他引:1  
罗双  尹球 《热带气象学报》2019,35(4):556-566
利用欧洲数值预报中心发布的第三代ERA-Interim月平均再分析资料对1979—2016年全球大气温度廓线进行统计,分别探讨了南、北半球大气温度廓线平均值和标准差随季节、纬度和海陆的时空分布特征,并与国内外常用的AFGL标准大气廓线进行了对比。研究结果表明:南、北半球各高度层温度的平均值、频数最大温度区间和最大值垂直分布均随高度先减小后增加;在大气低层,多年的温度波动较大,200 hPa处波动达到最小;不论是北半球还是南半球,大气温度平均值廓线均具有典型的纬度差异,其中低纬度季节性差异较小,中纬度次之,高纬季节性差异最大;各季节大气温度廓线的海陆差异不同,且南半球海陆差异比北半球大。大气温度标准差廓线同样存在纬度、海陆和季节分布差异。根据ECMWF再分析资料构建的温度廓线较AFGL标准大气廓线而言具有更加丰富的时空分布等细节特征,并且代表了气候变化后最新的大气温度状况。有关结果可作为现有标准大气廓线的更新和完善,为新型卫星仪器应用性能评估、辐射传输算法和大气反演方法评价和对比分析提供支持。   相似文献   

16.
为了定量评估北京气候中心(BCC)发展的BCC_CSM对当代全球海表温度和混合层深度的模拟能力,以WOA09(World Ocean Atlas 2009)观测资料作为检验模式的气候态实况场,提取包括BCC_CSM在内的CMIP5中的17个海气耦合模式的模拟结果,评估BCC_CSM模拟的全球海表温度和混合层深度的气候平均态并分析造成偏差的可能原因。结果表明:BCC_CSM模拟的海表温度在北半球中高纬的误差较大,而在其余纬度的模拟性能较佳。偏差的产生主要归因于海洋环流偏差。BCC_CSM模拟的最深混合层在北半球中高纬和南半球高纬地区的误差较大,同时这些区域也是多模式模拟差异最大的区域;其模拟的最浅混合层在南半球中高纬的偏差较大。冬季大西洋经向翻转环流的模拟在北大西洋下沉的位置偏南导致北半球高纬地区海表温度偏冷。由此认为包括BCC_CSM在内的许多海气耦合模式需重点改进对南、北半球深对流海域物理过程的描述,以提高气候预测的可信度。  相似文献   

17.
An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1,500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland–Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.  相似文献   

18.
A survey of the spatial and temporal behavior of the atmospheric general circulation as it relates to both polar regions is presented. The review is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40), updated using ECMWF operational analyses. The analysis spans 1960–2005 in the Northern Hemisphere, but is restricted to 1979–2005 in the Southern Hemisphere because of difficulties experienced by ERA-40 prior to the modern satellite era.The seasonal cycle of atmospheric circulation is illustrated by focusing on winter and summer. The huge circulation contrasts between the land-dominated Northern Hemisphere and the ocean-dominated Southern Hemisphere stand out. The intensification of the North Atlantic Oscillation/Northern Annular Mode and the Southern Annular Mode in DJF is highlighted and likely due to warming of the tropical Indian Ocean. The Arctic frontal zone during northern summer and the semi-annual oscillation throughout the year in the Southern Hemisphere are prominent features of the high latitude circulation in the respective hemispheres.Rotated principal component analysis (RPCA) is used to describe the primary modes of temporal variability affecting both polar regions, especially the links with the tropical forcing. The North Atlantic Oscillation is a key modulator of the atmospheric circulation in the North Atlantic sector, especially in winter, and is the dominant control on the moisture transport into the Arctic Basin. The Pacific-South American teleconnection patterns are primary factors in the high southern latitude circulation variability throughout the year, especially in the Pacific sector of Antarctica where the majority of moisture transport into the continent occurs.  相似文献   

19.
BCC_CSM对全球海冰面积和厚度模拟及其误差成因分析   总被引:3,自引:0,他引:3  
本文评估了国家气候中心发展的BCC_CSM模式对全球海冰的模拟能力,结果表明:该气候系统模式能够较好地模拟出全球海冰面积和厚度的时空分布特征,且南半球海冰模拟能力优于北半球。通过对比分析发现:年平均海冰面积模拟误差最大的区域位于鄂霍次克海、白令海和巴伦支海等海区,年平均海冰厚度分布与观测相近,在北半球冬季模拟的厚度偏薄;从海冰季节变化来看,模拟的夏季海冰面积偏低,冬季偏高;从海冰年际变化来看,近60年南北半球海冰面积模拟都比观测偏多,但南半球偏多幅度较小,然而北半球海冰年际变化趋势的模拟却好于南半球。另外,通过对海冰模拟误差成因分析,发现模拟的净辐射能量收入偏低使得海温异常偏冷,是导致北半球冬季海冰模拟偏多的主要原因。  相似文献   

20.
多窗谱分析方法及其在全球变暖研究中的应用   总被引:12,自引:0,他引:12  
江志红  屠其璞  施能 《气象学报》2001,59(4):480-490
多窗谱分析方法是一种低方差、高分辨的谱分析方法 ,尤其适合于非线性气候系统中高噪声背景下弱信号、时频演变信号的诊断分析。文中简要地介绍了多窗谱分析方法的基本原理 ,并将其用于近 1 5 0 a来全球及南、北半球温度变化的研究。结果表明 :(1 )在温度呈线性变暖的背景趋势下 ,北半球、全球年平均温度还具有显著的 40~ 70 a的准周期低频振荡 ,它们与变暖过程中的波动性密切相关 ;(2 )年代际振荡信号在北半球温度序列中也相当明显 ,南半球则存在多种低于 5 a尺度的显著振荡周期 ,半球或全球 ENSO振荡分量、QBO周期信号的振幅都具有缓变包络的特性 ;(3 )与传统功率谱估计、最大熵谱估计结果的对比表明 ,多窗谱分析方法方法得到的谱估计分辨力高 ,稳定性强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号